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Abstract—The emergence of large cloud providers in the last
decade has transformed the Internet, resulting in a seemingly
ever-growing set of datacenters, points of presence, and network
peers. Despite the availability of closer peering locations, some
networks continue to peer with cloud providers at distant
locations, traveling thousands of kilometers. In this paper, we
employ a novel cloud-based traceroute campaign to characterize
the distances networks travel to peer with the cloud. This unique
approach allows us to gain unprecedented insights into the
peering patterns of networks. Our findings reveal that 50% of the
networks peer within 300 kilometers of the nearest datacenter.
However, our analysis also reveals that over 20% of networks
travel at least 6,700 kilometers beyond the proximity of the near-
est computing facility, and some as much as 18,791 kilometers!
While these networks connect with the cloud worldwide, from
South America to Europe and Asia, many come to peer with
cloud providers in North America, even from Oceania and Asia.
We explore possible motivations for the persistence of distant
peering, discussing factors such as cost-effective routes, enhanced
peering opportunities, and access to exclusive content.

Index Terms—Cloud Computing, Remote Peering, Long-Haul
Links

I. INTRODUCTION

The last decade has radically changed the Internet structure,
with large cloud providers emerging as central components of
a densely connected topology [1], [2], [3], [4], [5], [6], [7].

The change has come with, and as a result of, the global
expansion of cloud providers’ footprints. Large providers, such
as Amazon, Google, IBM, and Microsoft, have deployed data
centers and Points of Presence (PoPs) in virtually every region
in the world, nearly doubling their geographic footprint in just
five years as they become the source and destination of the
majority of today’s Internet traffic [8], [9], [10], [11], [12].

This impressive expansion means that most access networks
worldwide are now a few hundred kilometers away from
cloud-provider datacenters. Figure 3 clearly illustrates this; it
shows the distribution of distances to the closest datacenter
for 57.5% of the Internet population [13] distributed over
175 countries around the world. Half the networks (hereafter
we refer Autonomous Systems (ASes) as networks) are less
than ~800 km (or ~500 miles) from a cloud datacenter (or
~1200 km/750 miles for the 75" percentile).

The same footprint expansion should prompt a shift in the
places where networks peer with cloud providers, from early,
faraway locations to proximate ones. This shift could reduce
transit costs, enhance control over routing, and enable latency-
sensitive applications [14]. Nevertheless, networks may still
opt for remote peering locations due to factors such as cost-
effectiveness [15], [16], the prospect of connecting with other

networks [17], [3], or simple inertia (e.g., preexisting IRU
agreements [18], [19], [20]). This raises the question of
whether the availability of closer peering options leads to a
preference for closer peering. Specifically, we are interested in
understanding if networks choose to travel to a distant peering
location to peer with cloud providers despite the availability
of nearby options and which networks decide to do so.

We conduct a cloud-based traceroute campaign to identify
the networks peering with the cloud and their peering loca-
tions. We set up virtual machine instances in all regions avail-
able from four large cloud providers (Amazon Web Services,
Microsoft’s Azure, Google Cloud Platform, and IBM Cloud
Services). We launched a network-wide traceroute campaign
(§1I1). We combine the collected data with additional network
datasets and apply state-of-the-art tools to identify networks’
peering points with the cloud (§IV).

To measure the additional distance covered by a network
from its nearest datacenter to its current peering location,
we introduce a new metric: peering stretch. This metric,
constructed based on a simple model of a network’s peering
point options, captures the difference between the geographic
distances from the network to its potential nearest peering
point and its actual peering point. Across the networks in our
study, we find a median peering stretch of 300 kilometers,
meaning that most networks travel less than 300 additional
kilometers from their nearest to their actual peering point.
However, the distribution of the peering stretch shows that
network on the upper 20% (80" percentile) can travel at least
6,700 km to peer with the cloud.

We explore the characteristics of networks that establish
peering connections with cloud providers at faraway locations,
the popularity of these options across continents and countries,
and the preferred destinations and providers for these peerings
§V).

We combine our topological findings with additional data
sources to explore possible motivations of these peerings
(§VD), including a preference for locations with more cost-
effective routes, richer peering opportunities, and access to
specific content. Our analysis offers additional insights that
could explain the persistent preference for peering at distant
locations despite the growing number of closer peering loca-
tions.

In summary, we make the following key contributions:

e We carried out a large-scale analysis of peerings with
large cloud providers from networks around the world.
Despite the global presence of cloud providers, some
networks still choose to travel to different continents, up
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to ~19,000 kilometers away from their closest datacenter,
to establish peering connections with cloud providers.

o We investigate the characteristics of networks with high
peering stretches. We discover variations in preferences
for traveling long distances to peer with cloud providers,
with almost no adoption in North America but significant
adoption in South American and Asian countries, with
networks serving 30% and 48% of the Internet popu-
lations, respectively. We explore the distances traveled
from different continents and the preferred destinations
and providers of these peerings.

« Finally, we explore possible explanations behind these
preferences. We find that several networks have estab-
lished presence at distant locations before the rise of
cloud computing suggesting an inertial behavior as a
possible explanation for the selection of peering locations.
For example, Telefonica’s subsidiary in Colombia has dis-
closed in its annual reports its subscription to multi-year
IRU agreements, some of which extend until 2030 [18],
[19].

Our findings have clear implications for studies of digital
sovereignty and cybersecurity, particularly on the criticality of
submarine cable infrastructure [21], [22], [23].

This work does not raise any ethical issues.

II. PEERING WITH AN EXPANDING CLOUD

The rise of cloud-based Internet services has been accom-
panied by a notable expansion of the physical reach of cloud
networks.

The expansion has come with a 5z increase in the number
of datacenters between 2013 and 2023, among the top-3
providers, and the construction of numerous submarine cables
from their first cable becoming operational in 2010 to an
expected partial or full ownership of 25 submarine cables by
2024. Figure 1 illustrates the combined growth of Amazon
Web Services (AWS), Microsoft’s Azure and Google Cloud
Platform (GCP)' in number of datacenters (Fig. la) and
submarine cable ownership (Fig. 1b).
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Fig. 1. Evolution of AWS, Azure, and GCP infrastructure, shown by the
growth in datacenter locations (Fig.1a) and the expansion of submarine cable
ownership (Fig.1b) over the years.

Combined with leased and terrestrial infrastructure, these
submarine deployments multiplied the access points to cloud
infrastructure across peering facilities in all regions. Cloud

'While having a comparatively smaller infrastructure, we were unable to
find any information on datacenters or submarine cable growth for IBM.
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Fig. 2. Geographical expansion of AWS, Azure, GCP, and IBM’s Points of
Presence (PoPs) across country, city, and facility levels from 2018 to 2023,
as shown in Fig.2a. Fig.2b displays their presence at peering facilities, with
gold diamonds representing presence at locations in 2018 and red circles
representing their presence across 2018 and 2023. For visual purposes, each
marker represents a 100kmx100km cell.
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Fig. 3. Distance (km) from the networks found in this work to the closest
datacenter.

providers can directly peer with networks through these ex-
tensive infrastructures, circumventing the public Internet [1],
reducing latency, and minimizing network congestion [7]. Ac-
cording to PeeringDB, these cloud providers have collectively
expanded their footprint at peering facilities from 150 to 244
in 2018-2023, with PoPs in 17 new cities and 11 new countries
(Fig.2).

With cloud providers having computing resources and
ingress points virtually everywhere, most networks can find
a nearby peering point with the cloud. Figure 3 illustrates
this point, plotting the distribution of distances to the closest
datacenter for all the 1,928 networks included as part of our
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study — networks around the world are, on average, ~800km
away from the nearest peering point (less than 1200km at the
80th pct). The impressive expansion motivates our work.

III. MEASUREMENT CAMPAIGN

As vantage points for our measurement campaign, we
use virtual machine (VM) instances placed in all regions of
four major cloud providers — Amazon Web Services (AWS),
Google Cloud Platform (GCP), Microsoft’s Azure, and IBM
Cloud.

We selected datacenters locations that maximize the geo-
graphic diversity of the vantage points, prioritizing metro areas
or regions with multiple cloud providers to enable comparative
analysis. Besides these areas, our deployment includes vantage
points in South America, the Middle East and Africa, regions
typically underrepresented in network measurement studies.
Figure 4 shows, on a world map, all the metro areas we
selected to place our vantage points (the number of VMs per
region): North America (13), South America (5), Europe (10),
Africa (1), Middle East (2), Asia (19) and Oceania (4).

We opted for the entry-level VM available for each provider
and region, since our measurement campaign is neither com-
puting nor storage intensive. Appendix A details the VM
specifications used in each cloud provider.

We ran a network-wide traceroute campaign using a /24
prefix granularity to probe all prefixes visible from Route-
Views [24] in the snapshot of March 27, 2022. This granularity
aligns with previous works that ran traceroute campaigns
from both the cloud [25], [26] and the edge [27], [28]. Prior
work assumes that (cloud) networks will not receive prefixes
more specific than /24 or their import policies would filter
them out. Indeed, Google [29], Amazon [30] and IBM [31]
peering policies explicitly state that they will not accept longer
prefixes.

Following Ark’s measurement design [28], we randomly
selected hosts in each /24. We distributed the measurement
load by slicing (after random shuffling) the number of probed
destinations across all the vantage points of each cloud
provider. We use Scamper [32] to collect our traceroute
measurement using ICMP packet probes at a maximum rate
of 1000 packets per second following the setup of previous
measurement studies [7].

Fig. 4. Datacenter locations of the cloud providers in the study. Pie chart
markers indicate regions with overlapping presence of providers.

In total, we collected 42.5M traceroutes, 12M from AWS,
11.7M from Azure, and 9.4M from each GCP and IBM Cloud.
We will make our dataset available to the research community.

IV. DETECTING PEERINGS TO THE CLOUD

We now describe our methodology for identifying networks
peering with the cloud and their peering locations. We process
our traceroute dataset to extract two relevant features: (1)
interdomain router interfaces (§IV-A), and (2) geographic
information of both routers and destinations (§IV-B). To gain
additional confidence in our findings, we consult external
data sources that provide information on the presence of
cloud providers and peers at different locations (§IV-D). We
encounter challenges and limitations in inference methods
and data sources, some of which are intrinsic to the cloud
environment, and describe how we mitigate these issues.

A. IP-to-AS traceroute mappings

We apply bdrmapIT [33] to identify interdomain router
interfaces and ASes along the traceroute paths.> The tool
combines multiple topological data sources to infer ASes in the
near and far side of each IP address of a traceroute sequence.
Applying bdrmaplT to our dataset, we identify 394,211 unique
interfaces interconnecting different pairs of networks. Our
analysis focuses on border router interfaces that interconnect
cloud providers with their network peers. These interfaces are
found when the near side corresponds to a cloud AS and the far
side to a non-cloud AS, after removing intercloud connectivity
from our dataset.?

The existence of sibling ASes that are part of organizations
operated by cloud providers, such as AS15619 (Google’s
primary ASN) and AS396982 (Google Cloud Platform ASN),
challenges our methodology. We use as2org+ [34] to address
this, a tool combining WHOIS and PeeringDB to identify
sibling ASes associated with a given organization.

We generate custom decision rules to extend bdrmapIT
inferences in cases where it is unable to produce inferences
for some public IP address. We investigated such cases and
discovered that some traceroute sequences contain IP ad-
dresses (e.g., 15.230.129.41) allocated to AWS, but not visible
from public route collectors. Since bdrmaplT inferences rely
on data derived from these public collectors, the near side
of these interfaces is not inferred to belong to a network
within Amazon’s organization. In such cases, we override this
inference and consider it as part of AWS as well.

We rely on APNIC’s eyeball population estimates [13] at the
AS level to weigh the relevance of networks peering with cloud
providers. Network data is insufficient for this purpose given
the mismatch between number of users and address spaces due
to the widespread use of NAT [35], and the fact that some
networks, such as academics, announce large legacy address
blocks [36].

a) Challenges and limitations: The effectiveness of
traceroute data for discovering AS interdomain relationships
depends on ICMP responsiveness of border routers along the
path. While the state-of-the-art bdrmaplT has made signif-
icant progress in inferring router ownership, it still suffers

2We use a containerized version of bdrmaplIT that simplifies the setup and
execution process. This container can be found: https://github.com/dioptra-
io/docker-images/tree/main/bdrmapit

3Marder et al. [25] finds that cloud providers peer between them in the
same city.
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from some limitations that could affect our work. A recent
study [37] has shown that bdrmapIT inferences are sensi-
tive to the presence of “off-path” or third-party addresses
in traceroute sequences. These inaccuracies could lead to
erroneous inferences when discovering networks that engage
in peering relationships with cloud providers. In the context of
cloud networks, we have also encountered unique challenges
and limitations. For instance, our measurements show AWS
extensively uses a Carrier-Grade-NAT (CGN) reserved address
pool (164.10.0.0/10, RFC6598 [38]), challenging the correct
inference of router ownership. Additionally, as previous works
have pointed out [25], Google Cloud Platform manipulates
packet TTLs, which reduces traceroute visibility and likely
compromises our ability to identify Google’s peers.

Despite the opaque nature of cloud networks, our method-
ology successfully identified peering locations in every AWS
and GCP region. Our resulting dataset provides a baseline of
cloud-to-public-Internet peering.

B. IP-to-country mappings

We combine multiple databases and geolocation heuristics
to identify the country- and continent-level locations of routers
and destinations. Given that geolocation databases are known
for containing some inaccuracies [39], [40], we take steps to
improve confidence on the inferred locations.

For starters, we prioritize different sources differently as fol-
lows. We give priority to HOIHO geolocation inferences [41]
when locating IP addresses of routers along the traceroute
path, considering that HOIHO uses an extensively validated
ruled-based inference technique based on (operator’s assigned)
geolocation hints embedded in DNS PTR records of router
interfaces [41]. While offering high confidence, HOIHO cov-
erage is limited to routers with DNS PTR records and for
which HOIHO has extraction rules. For the remaining routers
and destinations, we rely on MaxMind GeoLite2 [42] for
geolocation, when corroborated by ipInfo [43].

We focus on a country-level granularity, shown to be more
reliable [44]. If a border router, the interface of a cloud
provider is within a 10 ms range of the datacenter from which
the traceroute was launched, we override the router’s assigned
country as that of the datacenter.

As a last step to mitigate potential geolocation errors, we
use speed-of-light constraints as a lower-bound to discard
inferences containing latencies of distant peerings (between
the datacenter and the border router) that are inconsistent with
the minimum distance between both end-points.

Overall, from the collection of router and destinations in our
traceroute collection, we geolocated 65.28% using MaxMind,
0.55% using IPInfo, and 34.17% using HOIHO.

a) Challenges and limitations: 1P geolocation is a known
challenge for infrastructure-based studies, and ours is no
exception. To begin with, we are unable to geolocate IP
addresses that belong to reserved address pools. Opting for
an active-probing geolocation method, similar to the RIPE
IPmap single-radium mechanism [45], to enhance geolocation
accuracy faced several limitations, including allocated but
non-announced prefixes that remain unreachable from probes

outside cloud networks, and hops within the cloud that does
not respond to ICMP Echo requests (pings)*, essential for
active probing.

Our study aims to provide a coarse-grained indicator of
when networks peer with cloud providers in a different
continent from where the prefix is geolocated. Despite the
known accuracy issues of geolocation, they have been found
to be generally reliable at the country level [46], [40]. This
is sufficient given the goal of our study. In addition, we
assume that inaccuracies within the same country are minimal,
compared to the intercontinental distances involved, and do not
change our main findings.
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Fig. 5. Illustrative traceroute

C. Final selection

TABLE I
EXAMPLE OF THE FINAL DATA PRODUCT
Cloud: Azure
8 | Datacenter: Frankfurt
& | Country: Germany
Continent: Europe
ASname: America Movil Peru S.A.C.
2| AS: 12252
§ Country: Peru
S | Continent: South America
Far-side AS: 12252
£ | Near-side AS: 8075
Déu Hop country: United States
;_E Hop continent: | North America
Hop rDNS: ae6l-0.ier0l.mia.ntwk.msn.net

As the last step in our data processing, we identify cloud
peers and the locations where they peer with their cloud
providers. Our analysis only focuses on the peer-originated
address space, as these networks control both the geographic
regions where those prefixes are physically deployed and the
peering point where that prefix is annouced to the network’s
peers, in this case the cloud.

Figure 5 uses an illustrative example traceroute to show the
described analysis and its output. Figure 5 shows a traceroute
launched from the Frankfurt datacenter of Azure, in Germany
towards a /24 within AS12253 of America Movil Peru SAC.
The analysis reveals a peering between AS8075 (Azure) and
AS12252 (America Movil Peru) in Miami, US. Table I lists
the associated output of our analysis, including AS name (e.g.,
‘America Movil Peru S.A.C.), cloud provider (e.g., Azure),
AS numbers at both ends of the border router (e.g., 8075

“Despite generating ICMP Time Exceeded in Transit messages that reveals
the traceroute path.
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and 12252 in the near and far sides, respectively), and the
DNS PTR record (including the substring mia) of the border
interface, among others.

D. Validating peering locations

We further confirm our inferences by consulting PeeringDB.
While our methodology includes several steps to build confi-
dence in geolocation inferences (§IV-B), external data sources
offer a complementary perspective that increases confidence
in our findings.

We compare our results with publicly available information
on the presence of peers and cloud providers from PeeringDB.
We argue that PeeringDB is a reliable source for validating
public peering with cloud providers, as cloud providers and
other large content providers require their peers to be listed
on PeeringDB in order to establish peering relationships [47],
[48], [29] at public peering locations.

Given the focus of our work— characterizing networks with
high peering stretch — we validate those networks traveling to
another continent to establish cloud peering relationships. We
use data from peering facilities and Internet Exchange Points
(IXPs) to determine whether both peers and cloud providers
are present at the same facility in a country, as indicated by our
findings. This analysis shows that only 3.17% do not match
that information. Nearly 57% (56.92%) of the evaluated cases
align with the information from PeeringDB. The remaining
cases include 15.85% which are not registered in PeeringDB,
while 24.06% are registered but do not disclose any presence.

V. DISTANT PEERING TO THE CLOUD

The methodology described in the preceding section results
in a set of networks along with their respective peering
locations with cloud providers. In this section, we focus on
networks traveling far to peer with the cloud, their cloud-
peering locations, and alternative closer locations where they
might have potentially established peering.

We introduce a new metric, peering stretch, to quantify
the extra distance traveled by a network from the alternative
to its actual peering location (§V-A). We show a significant
fraction of high-peering stretch across cloud providers and
find that networks, on the 80" percentile, travel as much as
6,700 kilometers beyond the distance to the nearest computing
facility.

We then examine networks with high peering stretch, fo-
cusing on variations observed across different regions, and
the preferred destinations and providers of these peerings. We
conclude our analysis exploring the role of transit providers
in delivering content to other continents (§V-C).

A. Peering Stretch

We define peering stretch as the difference between great-
circle distances from traceroute destinations to peering points
and to the nearest data centers. While this simple model obvi-
ates geographic barriers (e.g., deserts, mountains), diplomatic
tensions, and other factors that may prevent the use of closer

locations, it nevertheless provides a first approximation of the
overhead opted by a network peering at a distant location.’

— Lima to Miami
— Lima to S&o Paulo
Extra Distance

Fig. 6. Illustrative example of Peering Stretch: A prefix in Lima identifies
Sao Paulo (blue line) as the closest peering location, but it actually peers in
Miami (red line). The orange line represents the additional distance traveled
when the closest available location is not selected.
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Fig. 7. Peering stretch for networks connecting to different large cloud
providers.

Figure 6 illustrates the concept of peering stretch with an
example of a network with a prefix in Lima, Peru. Although
the closest peering location for this network is Sao Paulo,
Brazil, the network instead peers with the same cloud provider
in Miami. The peering stretch calculates the distance between
the prefix and both points: the closest available location (blue)
and the actual peering point (red). It then computes the extra

5Peering stretch, as defined here, represents a conservative estimate of
the true peering stretch. when considering that peering occurs at a PoP
geographically closer than the closest datacenter. Given its conservative
and approximate nature, this metric can be slighly negative in case of close
proximity between network locations, peering points and datacenters.



ACM/IEEE TRANSACTIONS ON NETWORKING

distance traveled to exchange traffic as a result of the peering
policy decision (orange).

Figure 7 shows the cumulative distribution (CDF) of peering
stretch for each destination prefix within a cloud peer. Note
that these peerings are associated with a subset of the prefixes
advertised by these networks. The figure includes curves for
peerings related to each of the four cloud providers in our
study — Amazon Web Services (AWS), Google Cloud Platform
(GCP), Microsoft’s Azure and IBM Cloud.

The analysis of the peering stretch reveals significant
variation in the peering locations used to exchange traffic
with cloud providers. A large percentage of prefixes in the
cloud peers are accessible from close locations, with peering
stretches below 500 km for 33%, 38%, 41%, and 72% of the
fraction of all prefixes reachable from AWS, IBM, Google,
and Azure, respectively. However, a notable large fraction of
networks travels more than 5,000 km to peer with the cloud.
This is the case for those peering with Google and AWS, where
41 and 42% of networks travel over 5,000 km to peer with
them. It is important to note that the cloud providers footprint
does not solely determine these high-peering stretches. Other
factors, such as the specific networks that choose to peer with
them and the existence of Indefeasible Rights of Use (IRU) —
long-term contracts granting access to infrastructure, typically
over 10 years — also influence peering decisions, along with
other considerations.

We repeated this analysis for a traceroute campaign col-
lected in October 2023 and found similar results that are
detailed in Appendix A.

B. Peers meeting the cloud

Figure 7 shows a wide range of peering stretch with a
standard deviation across all providers of ~4,000 km and
a range of ~18,000 kms. In the following paragraphs, we
explore the networks incurring high peering stretch and the
user population they capture using an estimate of Internet pop-
ulations offered by APNIC eyeball [13], the distances traveled
within and across continents, and the preferred destinations
and providers of these peerings.

a) Who is peering with the cloud? A regional view:
Figure 8 presents, per continent, the number of eyeball net-
works peering with the cloud, the percentage of users they
capture, and their associated peering stretch. Figure 8a shows
a boxplot of the aggregated number of eyeball networks
that peers with the cloud (left) and the estimated Internet
population they capture, aggregated per continent. The analysis
shows significant variations across continents. Considering
their peering stretch (Fig. 8b), we observe that certain regions
have a large fraction of prefixes traveling significantly farther
from the nearest location. While 90% of North American
prefixes are served from the closest location, the corresponding
fraction is much lower in other regions. For instance, 25% of
prefixes in South America and Oceania travel more than 7,000
km and 13,000 km, respectively. Appendix A includes a CDF
of peering stretch per continent (Fig. 8b), allowing a more
detailed analysis of the long-tail distributions.
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Fig. 8. On the top, Fig. 8a shows the eyeball networks peering with cloud
services across continents, aggregating the Internet users they represent. On
the bottom, Fig. 8b presents the "peering stretch’ for these networks, offering
a continent-wise comparison.
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Fig. 9. Peering matrix that shows the fraction of continent eyeballs (columns)
that peers with the cloud in a given continent (rows).

b) Where do peers come from and where do they peer?:
Figure 9 illustrates this as a heatmap with the continents of
peering points (rows) and traceroute destinations (columns),
with each cell showing the fraction of the Internet population
from networks that meet the row-column pairs.

The colors and numbers in the heatmap show a clear pattern.
As expected, the majority of Internet populations peer with the
cloud within their home continents, shown in the matrix di-
agonal. Nevertheless, the analysis reveals a substantial portion
of these Internet populations — with the exception of North
America — also engage in cloud peering at distant locations,
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either as a secondary peering point or, in some cases, as the
primary one.

The most common destination for these remote peerings
is North America, where a significant number of networks
and their users — ranging from 0.29 to 0.47, go to peer with
larger cloud providers. Major networks such as Bharti Airtel-
9498 and China Telecom-4134, both significant providers in
the APNIC region, provide additional examples of networks
opting for remote peering as they travel to the US for peering
with cloud providers (possibly not exclusively). Besides North
America, Europe serves as a popular alternative destination for
eyeball networks, particularly those in Africa (0.15) and Asia
(0.18), likely due to geographical proximity and the availabil-
ity of submarine cable (e.g., ACE, SeaMeWe-4) connecting
the continents. We find negligible remote eyeball networks
outside North America and Europe in other continents. An
interesting case is Angola Cables-37468, a state-funded transit
company [49] aimed at establishing low-latency connectivity
between Africa and the Americas. The company invested in
deploying a transoceanic cable in the South Atlantic [50] to
connect to Brazil, the ultimate goal is optimizing routes from
Angola to Miami [51], [52].

c) With whom do they peer?: We examine the preva-
lence of country-level Internet populations that peer with the
cloud among cloud providers. Figure 10 shows the cumulative
distribution of the fraction of countries’ Internet populations
that peer with each cloud service. The plot shows two clear
clusters, with IBM separated from the second cluster, which
includes GCP, Azure, and AWS. Their respective mean values
of the size of the countries’ Internet population hosted by
these peers show a similar grouping with IBM (11.33%),
significantly different than GCP (27.27%), Azure (32.19%)
and AWS (32.28%). Looking at the specific countries and
networks contributing to these populations shows networks in
countries as diverse as Uruguay, Vietnam, Qatar, and New
Zealand.
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Fig. 10. Cumulative distribution of the country-level eyeballs peering with
the cloud in a different continent.

As a side note, we found several organizations using differ-
ent networks for peering and serving eyeballs and accounted
for this in our analysis. For instance, our estimation of the
Internet population of networks peering with the cloud refers
to all eyeball networks within a cloud-peering organization.
We include a detailed analysis of these organizations in
Appendix A.

C. Bypassing transit-free-clique transits

In recent work, Arnold et al. [7] shows the extent to which
networks bypass TIER-1 transit providers to peer with the
cloud. Considering this work and the long tail distribution of
peering stretch, we focus on the subset of peers that travel to
a different continent to peer with the cloud and investigate the
role of these peers as transits, their peering and destination
points.
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Fig. 11. Boxplot of the fraction of routes (left) and networks (right) in each
country that is reachable via tfc and non-tfc networks peering with the cloud.

We download the entire CAIDA’s PPDC dataset® to compile
a list of all networks that have been at some point identified
as members of the fransit-free clique [53]. Using this mem-
bership information, we classify networks peering with cloud
providers into two categories: (i) transit-free-clique (#fc) peers,
and (ii) non-transit-free-clique (non-tfc) peers.

To compare tfc and non-tfc peers in routes to interconti-
nental destinations, Figure 11 shows a boxplot of the fraction
of routes and networks to each country that use either type
of network. Our measurements show that non-tfc peers are
more prevalent in the path to intercontinental destinations in
both routes and networks. This “second tier” is composed of
diverse networks that established peering with the cloud at
intercontinental locations to serve smaller networks in their
regions. For instance, a notable example in Brazil involves
large regional transit networks such as Vtal-7738 and Algar-
16735, which peer with AWS in the Ashburn area.

VI. WHY GOING FURTHER?

In this section, we discuss some of the possible reasons that
could motivate operators to establish distant peering to the
cloud. While this discussion is not intended to be exhaustive,
it explores some of the explanations brought up in discussions
with network operators and other researchers, including the
role of content availability and clouds’ pricing strategies, the
availability of peering options as an attractor, the influence
of physical infrastructure’s availability, and decreasing cost,
especially for those networks with no proprietary long-haul
infrastructure, and whether presence at remote locations pre-
dates the growth of cloud computing.

A. Availability of Long-Haul Infrastructure
In the last section, our findings reveal that 20% of the
prefixes are accessible through peering locations situated over

SCAIDA’s PPDC files can be found at: https:/publicdata.caida.org/datasets/
as-relationships/serial- 1/
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Fig. 12. Comparative analysis of the network expansion strategies through submarine and terrestrial cables. On the left, the network of the Latin American
mobile carrier Claro extends across Central and South America, highlighting its strategic connectivity to the US, particularly Miami (Fig. 12a). On the right,
Liquid Telecom’s extensive overseas presence showcases an example of networks peering abroad to serve the domestic markets, such as Zimbabwe in this

example (Fig. 12b).

6,700 km away from their nearest datacenter. With these
findings in mind, we now focus on network structure char-
acteristics, such as submarine connectivity, leasing contracts,
and capacity costs, that could explain these preferences for
peering at distant locations.

a) Availability of Submarine Infrastructure: We use
Claro Peru-AS12252 as an example to illustrate a broader
trend in Latin America, where there is a consistent inclination
to establish a presence in the US. The submarine cable ring
of Claro, depicted in Figure 1247, encircles South America
and extends to Florida, showing an interest in connecting
Claro’s subsidiaries in South America with the US. Although
IX.br Sao Paulo [54] currently serves as the preferred inter-
connection point for cloud providers and regional networks,
historical preferences of Latin American providers for Miami
persist. This trend extends beyond Claro Peru-AS12252, as
recent submarine cable deployments, including Mistral (2021)
and Monet (2017), show a persistent interest in establishing
connections between the US and Latin America. Despite
the growing local hosting presence, PeeringDB reveals the
continued presence of numerous large and medium-sized
Latin American networks in various facilities across Southern
Florida and the US.

b) Indefeasible Right of Use: A common practice in the
network industry involves subscribing long-term agreements
known as Indefeasible Right of Use (IRU) contracts in which
companies secure access to submarine routes for 10 to 25
years [55], [56], [57], [58], [59], [60], [61], [62]. For instance,
Telecom Argentina S.A. (AS7303) disclosed in a 2013 filing to
the US Securities and Exchange Commission (SEC) that it had
acquired IRUs for over 15 years from Latin America Nautilus

7Cable layout sourced from Telegeography’s GitHub repository, retrieved
during its public availability.

(LAN), a subsidiary of Telecom Italia to establish connectivity
with Miami [20]. These extended agreements enable networks
to reach overseas destinations to obtain access to content,
pricing structures, and peer connections unavailable in their
respective regions. Liquid Telecom-AS30844, a prominent
provider in South Africa and Zimbabwe, is an example of
purchase capacities (probably over IRU contracts) to establish
a presence in peering facilities across multiple continents, as
shown in Figure 12b. The period of these contracts suggests
that many could have been established before the expansion
of cloud services that could explain the inertia observed in
peering locations, resulting in high peering stretch values.

c) Declining costs of International capacity: Despite
the historical decline in capacity costs, we search for public
records that could explain the persistent interest of networks
in establishing remote presence. While typically confidential,
Table II aggregates reported price reductions from Telegeog-
raphy’s public articles [63], [64], [65], [66], highlighting
significant drops, especially in the Miami-Sao Paulo route.
Despite suggestions in some reports, leasing submarine ca-
pacity may not be the predominant factor in pricing structures
(eg., backhaul and rack costs) [67], [55], networks may
establish a presence in global hubs to secure competitive
transit agreements. Although transit costs have seen consistent
overall reductions [67], transit providers in the US and Europe
offer more economical transit agreements compared to other
regions [16], [15].

B. Content availability and pricing strategies

Two other reasons that could help explain networks peering
at remote locations are the availability of particular content and
pricing considerations. To obtain a view of cloud regions used
to serve content, we examine top-ranked websites in countries
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TABLE 11
VARIATION IN 10/100 GBPS WAVELENGTH MEDIAN PRICES. EMPTY
CELLS ARE FOR UNAVAILABLE DATA.

route  '14-°17 17-20° 19°-22°
Miami-Sao Paulo -79.46% - 47.45%  -56.10%
London-Singapore - 16.94%
Los Angeles-Tokyo -64.21%  -27.10%
Hong Kong-Singapore -62.68%
London-New York -46.86%  -34.15%

across different continents. We also consider pricing of cloud
services in different regions.

The web is a complex ecosystem involving multiple re-
sources and services that third-party providers often serve.
In the current service model, websites commonly rely on
third-party providers for — at least — content delivery, DNS
management, and domains’ certificates. While prior efforts
have explored third-party dependency in The Web [68], [69],
our analysis focuses on its potential relation with peering
decisions.

We run a non-exhaustive analysis to obtain a qualitative
understanding of using remote cloud regions to serve cloud
resources. To collect data for this analysis, we focus on Alexa’s
list of TOP500 regional websites for different countries and
use a VPN service to obtain all resources of these websites
including CNAMES, A and PTR DNS records [69]. We limit
our analysis to those servers that embed their geolocation
information in PTR DNS records. A complete geolocation of
the serving infrastructure of cloud-based services is a complex
task beyond this work’s scope. We collect this data from
vantage points in six different countries, one per continent:
Australia (Oceania), Argentina (South America), United States
(North America), Germany (Europe), India (Asia) and South
Africa (Africa).

Table III shows the percentage of websites that use cloud-
based services and the fraction that has at least one resource
hosted in another continent. While we see limited adoption of
IBM and Azure in the surveyed countries, AWS and GCP
are, on average 44% and 47%, respectively, of their most
popular websites. These results reveal a significant adoption
of content served from remote locations (likely non-cacheable
content), particularly in South Africa, Argentina and Australia.
For instance, Google resources are being served from overseas
— primarily Singapore — for 61% of Australia’s top-ranked
websites. Websites in the United States and Germany, on the
other hand, are primarily relying on local cloud resources.
While the line of causation is unclear, this dependency on
overseas-hosted content may help explain cloud peering at
distant locations.

To explore pricing consideration as another explanation for
remote peerings, we investigate the per-region price strategies
implemented by cloud providers. Figure 13 shows the per-
centage difference of VM prices in different regions when
compared with the base price (US-based resources). The
price spreads are remarkable, reaching 61% (Sao Paulo) and
115% (Rio de Janeiro) for AWS and Azure, respectively. The
price gaps across computing facilities may incentivize service

providers to host resources overseas, especially when these
resources are latency-insensitive, encouraging some networks
to establish remote peerings to enable direct access to this
content.

C. Peering opportunities

TABLE III
PERCENTAGE (WITH TOTAL NUMBERS IN PARENTHESES) OF TOP500
WEBSITES IN COUNTRY-LEVEL RANKINGS THAT HAVE RESOURCES
HOSTED AT CLOUD PROVIDERS (ALL) AND INTERCONTINENTAL CLOUD
FACILITIES (ICT).

AWS GCP

Country ALL ICT ALL ICT
Argentina | 46 (231) 17 (34) | 46 (350) 7 (33)
Australia | 55 (273)  15(76) | 55 (317) 61 (304)
Germany | 40 (201) 4 (19) | 40 261) 1 (4)
India 38(192) 10 (48) | 38 (27)  3(13)
United States | 63 (316) 1(6) | 63(289)  0(2)
South Africa | 23 (115) 23 (115) | 23 (180) 36 (180)

We examine the preferences of networks when establishing
a presence abroad, aiming to understand how these choices
influence the composition of IXPs.

Internet Exchange Points (IXPs) have proliferated across all
regions [4], [3], [70], [71], [51], [72], [73], serving as local
peering hubs that facilitate settlement-free traffic exchange
among members, bypassing transit providers and reducing
latency. This model has thrived globally, fostering dense
peering ecosystems in Europe and Latin America, with North
America following to a lesser extent [4], [3], [70], [71]. Since
IXPs are designed to keep local traffic local, it is important
to explore possible motivations behind networks traveling
significant distances to participate in an IXP.

We analyze potential regional correlations between the
number of IXP members and the diversity of their nationalities,
using the latter as a proxy for whether larger memberships pro-
mote distant peering relationships. To explore these dynamics,
we used a snapshot of PeeringDB (PDB) from April 2022.
Our analysis draws on the reported presence at IXPs to assess
membership and utilizes the nationality of the organizations
managing these networks, as recorded in PeeringDB, to eval-
uate the diversity of their origins. Notably, despite hosting the
largest number of members, IX.br Sao Paulo shows less diver-
sity than its European counterparts, DE-CIX, LINX, and AMS-
IX, which have evolved into global hubs attracting networks
from various regions. We further examine PeeringDB records
over six years (2018-2023) to investigate a potential growth
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Fig. 13. AWS’s (Fig. 13a) and Azure’s (Fig. 13b) per-region price differentiation strategies. Regional prices are compared as a percentual increment concerning

a base price.

in the international presence and find a consistent fraction
(0.17) of networks present at a different continent from where
they were registered. The analysis suggests networks may be
present abroad when IXPs offer a diverse network ecosystem.
Interestingly, this preference has remained consistent over the
past six years.

VII. RELATED WORK
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Fig. 14. Herfindahl-Hirschman Index (HHI) (x-axis) measures the diversity
of the nationality of IXP members and the number of members (y-axis) for
IXPs registered in PDB. Marker shapes distinguish the continents where these
IXPs are located.

The rise of cloud providers in recent years has drawn the
attention of the research community. Many of these efforts
reviewed changes in the topological characteristics of the
network brought about by the expansion of cloud networks.
Arnold et al. [7] build on a cloud-centric measurement cam-
paign to show that cloud providers deliver content through
a dense non-hierarchical interdomain network. Applying a
similar methodology to ours, Marder et al. [25] identified
and geolocated clouds’ border routers but focused on the
interdomain connectivity between cloud providers. Yeganch
et al. [26] also relied on traceroutes to the entire /24 address
space to reveal Amazon’s peering fabric and classified these
links into public, private and virtual private interconnections.
Salamatian et al. [74] addressed the rising concern of opacity
in cloud-based measurements by proposing Ricci’s curvature

to identify clouds’ private links. In contrast, our work extends
beyond network topology by looking into the locations where
networks peer with the cloud. We compare these peering
locations with the respective locations of network prefixes and
evaluate the proximity of available cloud alternatives.

Other studies have gone beyond the examination of topolog-
ical characteristics. Dang et al. [75] explored latency charac-
teristics to major cloud providers and identified distance and
last-mile bottlenecks as significant factors. Mok et al. [76]
ran speed test clients from Google Cloud Platform to detect
network congestion during COVID-19 lockdowns in the US.
Kashaf et al. [68] and Kumar et al. [69] quantified the reliance
of most visited websites on cloud providers and discussed the
risks of Internet centralization. Similarly, Moura et al. [77]
examined queries to root and ccTLD DNS servers to quantify
the level of Internet centralization of traffic to large cloud and
content providers.

Similar to our findings, the existing literature on IXPs has
also examined the role of these interconnection points in
offering content and peering opportunities. The growth of IXPs
transformed the network by attracting both participants and
content providers to the same place, creating a virfuous cycle
of growth. Ager et al. [3] documented this transformation,
showing that by 2011, the traffic exchanged at a prominent
European IXP had exceeded the volume carried by one of
the largest Internet Service Providers. Considering the close
relationship between IXPs and content providers, Bottger et
al. [78] proposed a ranking mechanism for large content
providers based on reported capacity and presence at public
exchanges. Castro et al. [17] further explored the phenomenon
of network flattening finding that networks often travel great
distances to join IXPs.

VIII. CONCLUSIONS AND FUTURE WORK

The emergence of large cloud providers in the last decade
has transformed the Internet, resulting in a seemingly ever-
growing set of datacenters, points of presence, and conse-
quently network peers. Yet, despite the availability of closer
peering locations, some networks continue to peer with cloud
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providers at distant locations, traveling thousands of kilo-
meters, beyond the nearest computing facility. This paper
presented the first examination of the distances network travel
to peer with the cloud. We analyzed different characteristics of
those networks opting for distant peering locations, revealing
that networks serving large Internet populations still travel to
North America and, to a lesser extent, to Europe to peer with
the cloud. We also discuss potential explanations for these
extended distances and argue about multiple factors such as
preexisting infrastructures and contractual agreements such as
Indefeasible Rights of Use (IRU). These findings contribute to
a deeper understanding of peering decisions that highlight the
inertia of some characteristics of the network topology and the
persistent use of submarine cables to peer at distant locations.

This work suggests promising directions for future work
extending the analysis of distant peering. Our analysis focuses
on four large cloud providers — Amazon, Google, IBM and
Microsoft. It may be interesting to expand this analysis to
other cloud providers, particularly Alibaba and Tencent. An-
other research direction could examine how distant peering
translates into end-to-end latency for real web services, assess
whether failover events risk SLA violations, and extend our
measurements longitudinally as new data centers and subma-
rine cables come online to observe how the stretch evolves
over time.
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APPENDIX

This work does not raise any ethical issues.

Table IV summarizes the locations, number and type of
VMs we instantiated in each of the cloud providers. We opted
for the entry-level VM available in each regions assuming that
traceroute measurements are neither computing nor storage
intensive tasks. We discovered that Azure’s entry-level VMs
were unable to collect any ICMP response and upgraded those
instances to the immediate upper tier obtaining successful
traceroute measurements.

CP VMs Locations VM Types
AWS 2 Cape Town, Hong Kong, t3.micro
14  Tokyo, Seoul, Osaka, Mumbai, Singapore, t2.micro
Sydney, Frankfurt, Paris, London, Bahrein, Sao
Paulo, N. Virginia, Ohio, N. California
GCP 14 Iowa, Toronto, Sao Paulo, Santiago, London, e2-micro
Frankfurt, Mumbai, Singapore, Hong Kong,
Tokyo, Osaka, Seoul, Sydney, N. Virginia
8 Blue Ridge, San Francisco, Sydney, Hong Std. B2s
Azure Kong, Tokyo, Seoul, Osaka, London, Frank-
furt, Toronto, Dubai, Sao Paulo
4 London, Frankfurt, Sao Paulo, Osaka Std. D2as v4
1 Des Moines Std. DS1
IBM 13 San Jose, Washington, Toronto, Sao Paulo, Bal. B1.2x4

Frankfurt, London, Paris, Hong Kong, Osaka,
Seoul, Singapore, Tokyo, Sydney

TABLE IV

LOCATIONS AND INSTANCE SPECIFICATIONS OF THE CLOUD RESOURCES

USED IN THE MEASUREMENT CAMPAIGNS.

Figure 15 shows the peering stretch for networks in each
continent peering with the cloud. These curves show that North
America has the most compact distribution with 90% of the
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Fig. 15. peering stretch” to provide context to the distances traveled to peer
with the cloud.

connections having detours of less than 1000 km. However,
Africa, South America and Oceania are notable examples of
heavy tails since networks from these continents often peer
with the cloud in North America.

We now turn our attention to the organizational structure
of these entities that facilitate access to the cloud for their
respective countries.
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Fig. 16. In many cases, the organization that peers with the cloud uses
different ASes to peer with the cloud and to provide access to the eyeballs.

To identify these organizations, we run as2org+ [34] to
obtain all sibling networks associated with those networks
that engage in cloud peering. In Figure 16, we examine the
difference between the percentage of eyeballs in the network
peering with the cloud and the percentage of eyeballs within
the entire organization. While the majority of these peers
(85.5%) show no difference with their respective organiza-
tions, we do observe several notable cases with substantial
disparities. These differences indicate that certain networks
within the organization engage in cloud peering and provide
access to a large number of eyeballs within their organizational
structure. State-owned providers of the Middle East [49], such
as Ooredoo-8781 in Qatar and STC-39386 in Saudi Arabia,
are prominent examples of separating both Internet population
and peering networks as they do it when they peer with the
cloud in Europe.

We validate the consistency of our findings over time,
by replicating our experiments on September 29, 2023. We
repeated the process of downloading announced prefixes,
partitioning them at /24 granularity, and slicing them into non-

overlapping segments across all VMs of each cloud provider.
After executing traceroute measurements from the same loca-
tions with identical configurations, we discovered that Azure
has shifted towards complete opacity with no hops visible
in the traceroute data. Despite testing various configurations,
we were unable to collect data from any hop along the
path, suggesting that Azure is currently filtering TTL-limited
packets.

Despite the absence of Azure data, our analyses with
both snapshots revealed similar general trends. For example,
Figure 17 shows the peering stretch distribution for tracer-
outes launched from AWS in both years, a cloud provider
with consistent visibility in both snapshots. The comparable
structure observed in the distribution indicates that the overall
configuration of peering networks has remained consistent
between the two campaigns. This finding indicates an overlap
among the peers of the cloud providers. Repeating the analysis
in §V-B and comparing both snapshots show temporal stability
in the results.
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Fig. 17. Comparison peering stretch distributions for traceroutes launched
from AWS in 2022 and 2023.



