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ABSTRACT
Geolocating network devices is essential for various research areas.
Yet, despite notable advancements, it continues to be one of the
most challenging issues for experimentalists. An approach for ge-
olocating that has proved e�ective is leveraging geolocating hints
in PTR records associated with network devices. We argue that
Large Language Models (LLMs), rather than humans, are better
equipped to identify patterns in DNS PTR records, and signi�cantly
scale the coverage of tools like Hoiho. We introduce an approach
that leverages LLMs to classify PTR records, and generate regular
expressions for these classes, and hint-to-location mapping. We
present preliminary results showing the applicability of using LLMs
as a scalable approach to leverage PTR records for infrastructure
geolocation.
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1 INTRODUCTION
Geolocating network devices is essential for various research areas
(e.g., [3–5, 8, 13]). Yet, after two decades and despite notable ad-
vancements, it continues to be one of the most challenging issues
for experimentalists [9].

Geolocating devices can be divided into two distinct problems: ge-
olocating end-hosts and geolocating network infrastructure. While
end-host geolocation has advanced signi�cantly due to its commer-
cial value, infrastructure geolocation remains signi�cantly underde-
veloped, and techniques commonly used for geolocating end-hosts
do not always translate well to routers and servers. For instance,

ACM SIGCOMM Posters and Demos ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0717-9/24/08
https://doi.org/10.1145/3672202.3673717

while latency-based geolocation is generally e�ective for end-hosts,
routers often ignore ICMP echo requests.

An approach for geolocating infrastructure that has proved ef-
fective is leveraging geolocating hints in PTR records associated
with network devices. Network operators encode physical location
hints in DNS hostname strings of network devices to help with
troubleshooting and operation [1] and previous work has shown
the potential value of leveraging this information [2, 6, 10, 11].

As early as 2002, Rocketfuel [11] used manually-assembled col-
lections of regular expressions (regexes) to extract PTR geoloca-
tion hints. Most recently, several e�orts have tried to automate
te task of extracting this location hints. The task of extracting
and interpreting geo-hints from PTR records is challenging. For
starters, the labels are primarily designed for human interpretation
rather than computational processing. In addition, there is a lack of
standardization across operators in what geographic information
is encoded and how, which leads to the development of an ad-
hoc approach for each codi�cation. Even within a single operator,
legacy infrastructure from rebranding and mergers and acquisitions
results in multiple standards that can take decades to converge.
For example, although the merger was executed almost 20 years
ago, AT&T still uses South Bell Corporation Global labels, such as
99-170-164-205.lightspeed.tukrga.sbcglobal.net. This of-
ten appears in networks with large geographic spans managed by
multiple teams and divisions, as seen in companies like Google.

Hu�aker et al. [2] tries to automate part of the task by searching
for geographic encoding based on a previously populated dictionary
of geographic-related strings. More recently, Luckie et al. [6] auto-
matically extract and interpret geo-hints embedded into hostnames
using regexes informed by a dictionary that includes strings such
as airport codes, city, state and country names), and learn simple
deviations from geohints such as pre�x (e.g., “ash” for “Ashburn”)
and partial matches (e.g., “ftcollins” for “Fort Collins”).

While highly e�ective, the coverage of these approaches and the
associated tools and datasets is limited largely due to the challenge
of scaling up some of the needed steps to create candidate regu-
lar expressions. Hoiho [6], the software component implementing
Luckie et al. approach, resorts to the MAXMIND database for the
large majority of IPs it cannot geolocate based on PTR records.
For a CAIDA ITDK dataset (itdk-2023-03, using traces collected
between 8-13 of March, 2023), it was able to extracted records from
0.041% of the IP addresses, although about half of the records have
associated PTR record information.

Our work is based on the observation that Large Language Mod-
els (LLMs), rather than humans, may be better equipped to identify
patterns in DNS PTR records and create extraction rules, o�ering
a path to signi�cantly scale the coverage of tools like Hoiho. Our
approach uses LLM to (1) classify PTR records into distinct groups

10

This work is licensed under a Creative Commons Attribution International 4.0 License.



based on the structure and potential geographic hints, (2) generate
regular expressions based on these classi�cations, identifying pat-
terns and consistent naming conventions, and (3) map the identi�ed
classi�cations and regex patterns to geographic locations by linking
encoded hints with actual place names.

The following paragraphs describe our approach and present
some preliminary results.

2 APPROACH & DESIGN
The eruption of Large Language Models (LLMs), e.g., GPT-4, re-
de�ned automating information extraction (IE) tasks, including
Named Entity Recognition (NER) for specialized �elds, such as
identifying network infrastructure encodings in our case. These
LLMs leverage few-shot learning (FSL) [12] to learn from limited
data, simplifying the development of new frameworks without
re-training. We adopt this model to develop pipelines employing
modern LLMs to learn example patterns and create extraction rules
from limited cases.

Instead of a one-shot approach, we divide the process of gener-
ating regular expresions and geohints into multiple intermediate
steps to maximize their precision. Our approach to decoding PTR
records using a multi-step process involving three distinct LLMs.
Each is specialized for a particular task, working with a subset of
records from a given provider, as follows:
Classi�cation We use LLM to categorize PTR records into classes.
The prompts in this stage guide the model to accurately identify
and label each record according to its class, considering various
features and patterns within the data.
Regex Generation Following classi�cation, we employ a regex
generation LLM to create regular expressions extracted from the
patterns observed in the classi�ed records. The prompts for this
model generate regex patterns that can match and extract relevant
information from the records. This is critical for precise parsing
and interpretation, as it allows the system to handle a diverse range
of record formats and structures with high accuracy.
Hint Map Generation The �nal component uses LLM for hint
map generation. This model correlates speci�c hints to geographic
locations or other relevant attributes. The prompts are designed
to produce mappings that enhance the accuracy of decoding net-
work information. By providing context-speci�c hints, this step
aids in interpreting complex data and improves the system’s overall
e�cacy.

3 PRELIMINARY RESULTS
To evaluate our approach we selected a subset of 680 ASNs to
analyze. We chose all large cloud providers, tier 1 ISPs (i.e., ISP
without customer to provider relationships), the top 390 AS from
APNICS Internet population data (together representing over 80%
of the Internet population), and the top AS by APNICs AS internet
population data per country. In total, the dataset includes 680 ASNs
and 854,317,370 PTR records. From our classi�cation model, we
�nd that 23% of these ASNs encode geographic information with a
�ner granularity than country level in their records.

Table 1 summarizes the key parameters of this dataset and our
mapping results. Our generated expressions and hint mappings
cover 190 countries and identify 2,117 unique cities through 5,096

Dataset

# of ASNs 680
Frac. Eyeballs 81.82 %
# of Countries 190

Mapping results

# of Hints 5096
# of Countries 190
# of Cities 2,117
# of regexes 1,409
Cost ($) $120
Runtime 6 hours

Table 1: Evaluation dataset and mapping results

hints. Additionally, the analysis identi�ed 1,409 unique regular
expressions (regexes) used for geolocation.

We apply our approach to a dataset containing 51,840 ASNs and
1,282,817,253 PTR records collected by OpenIntel [7]. Out of these,
we generate regular expressions and hint mapping for 680 ASes.

First Attempts At Validation. We extracted geo-hints from AT&T
(AS7018) records from CAIDA ITDK dataset (itdk-2023-03), a
particularly challenging operator due to non-standard encodings.
Hoiho extracts data from 563 out of 239,796 AT&T records. Our
LLM-based approach is able to extract 38,883 records. Our validation
involves pinging to geolocate AT&T devices from RIPE Atlas probes
in the same city, a di�erent city in the same country, a di�erent
country, and a di�erent continent. Figure 1 shows clearly separated
latency distributions, suggesting that the majority of devices were
correctly geolocated.
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Figure 1: CDFs of RTTs from probes in a di�erent distance
from the geolocated device.

4 CONCLUSION
We make the case for an LLM-based approach to extract geo-hints
for network devices, reducing the reliance on manual tasks of cur-
rent approaches.We extract geographic information and perform an
initial validationwith records fromAT&T, �nding that our extracted
geo-hints correspond to lower RTTs when using that information
to select probes.
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