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We are replacing the foundation of today’s grid

conventional multi-machine system

– centralized generation & kinetic energy storage

+ homogeneous dynamics & controls of SGs

+ interoperable & well-understood dynamics

+ decentralized ”fast” dynamics & synchronization

– centralized ”slow” control & optimization

renewable multi-inverter system

+ decentralized generation & storage

– vastly heterogeneous technologies & controls

– complex & poorly-understood interactions

– no principled system-level design & composition

– centralized control & optimization do not scale
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Timescales in conventional power systems & cyber layer interactions

Demand response & CO2 reductionCyberattacks

Focus in the literature on cybersecurity & slower timescales
▶ cybersecurity of slow centralized controls over private networks
▶ data-center response on tertiary control timescales to reduce congestion, CO2, …
▶ few works on scalable communication-enabled control architectures
▶ brittleness typically only discovered when things go wrong
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A storm in South Australia: gone in 250 ms

source: AEMO
3/10



Frequency after phase-to-ground fault in Texas

source: ERCOT
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Transition to converter-interfaced renewables, storage, & transmission

Emerging cyber-physical systems with power electronic backbone
▶ interactions across vast spatial scales, heterogeneous physics, & communication networks

▶ decreased energy buffers but improved controllability
▶ devices communicate through power network and cyberlayer
▶ physics and controls on overlapping timescales result in highly complex interactions

Scalable analysis for multiphysics system (no cyber yet …)

▶ simulations & numerical methods do not scale
▶ analytic stability conditions available for 100% GFM (ideal power source) or 100% sync. generator
▶ very limited results across timescale and physical domains:

• power electronics, machines, renewables, storage, AC & DC transmission, EVs, data-centers, …
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Scalable end-to-end control and analysis framework

Modeling complex networks, plants, & devices

▶ broad device classes: generation, conversion, transmission
▶ dual-port grid-forming control increases survivability
▶ communication for secondary control & dispatch on fast timescales

control through balancing energy buffers & flows
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[1] Subotić, Groß: Power-balancing dual-port grid-forming power converter control for renewable integration and hybrid AC/DC power systems, IEEE TCNS, 2022
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Grid-forming data-center and telecommunication loads?

Controllability & flexibility on fast timescales
▶ stochastic load with some controllability
▶ ”grid-forming” loads responsive in milliseconds
▶ core functions may not significantly impact ICT equipment

Lots of open questions
▶ increased converter and battery sizing/cost
▶ higher voltage levels & protection
▶ re-distributing compute tasks?

Tanaka et al, NTT Technical Review
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Increased need for distributed coordination & reliable communication

Today’s communication-enabled system-level controls
▶ secondary control rebalances buffers across system
▶ centralized control over private networks

Does not scale to millions of converters
▶ distributed secondary control for microgrids
▶ converters & renewables require fast secondary control
▶ perceived lack of security & reliability of public
infrastructure

Many open questions
▶ comm. architectures & requirements for real-time control?
▶ encryption & authentication vs. latency & sampling rates
▶ what is the ”price” of dynamic stability & performance
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Internet-supporting real-time control of power systems?

Main focus in the power engineering literature
▶ grid-support on slow timescales using data centers
▶ microgrids and UPS for critical infrastructure
▶ what can the grid do for the Internet?

Leveraging converter-interfaces renewables, storage, & distribution
▶ local controllability & buffers prioritized for ICT equipment
▶ power flow control technology available but not widely used
▶ medium-voltage DC-based distribution architectures

• solid-state transformers and MVDC overlays
• interlinking substations, data-centers, and storage (e.g., EV chargers)

source: Peyghami et al, IEEE TSG, 2019
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Summary and take home messages

Resilience of emerging power systems
▶ transition to converter-interfaced generation, storage, & transmission
▶ dynamics on fast time scales critical

Grid-supporting Internet infrastructure
▶ grid-forming load concepts and grid-support on fast timescales
▶ scalable & secure communication networks
▶ communication functions tailored to power system control &
coordination

Internet-supporting power systems functions
▶ controllability & buffers prioritized for ICT equipment
▶ power flow control & MVDC distribution to interlink data-centers and
storage (e.g., EV chargers)
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