
Threats to Internet Security/Survivability

Stefan Savage
University of California, San Diego

For the non-networking/non-security folks

▪ The cybersecurity game
– What input, if provided to system X, will put it in an unacceptable state?
▪ Does this state satisfy goals of any adversary?

– Few constructive theories/laws; software is arbitrarily brittle
– “Programming the Weird Machine” – the details are where the action is

▪ Some networking & network security basics
– We identify what we want to communicate with using names

(e.g., northwestern.edu)
▪ There is a distributed service (DNS) that makes these names to IP addresses

– We deliver data using these IP addresses (e.g., 129.105.136.48)
▪ There is a distributed service (BGP) that tells routers how to get each packet closer to its destination (even

as network topology is changing)

– Both of these distributed services rely on the correct operation of third parties
– Both are subject to corruption via impersonation

Historic context

▪ Core Internet protocols designed for cooperative environment
– Peers assumed to implement protocol as designed
▪ IP, TCP, DHCP, ARP, SMTP, most IEEE MAC and switching/bridging protocols
▪ You can lie to all of them about almost anything

– Security left almost entirely to the future or the application

▪ Historic Internet protocols implemented in a similarly trusting world
– RFC760 – “an implementation should be conservative in its sending behavior, and liberal in its receiving behavior.”
– Original DARPA/NSFnet routing had single backbone, BGP emerges mainly to support policy/business objectives

(NOT security) -- assume all ISPs are doing the right thing

▪ Security emerges as a real concern in the 90s
– In response to business needs
▪ Application layer encryption/integrity – SSL/TLS (so people will do e-commerce)

– In response to attacks
▪ DDoS attacks of 99, open relay issues with SMTP, issues with source address spoofing and worms/ddos; DNS hijacking
▪ RFC 1543 creates mandate for “security considerations” in protocols in 1993; lackluster effort for years; ekr writes RFC 2552 on

how to write such sections in 2003
– All well after key protocols have been standardized and deployed

Where is most Internet security effort over the last 20 years?

▪ TLS and the CA-based PKI infrastructure
– Significantly driven by browser vendors

▪ Fixes to individual protocols where big vulnerabilities are being exploited
– E.g., Bailiwick checking for DNS cache poisoning and then QueryID hacks in response to Kaminsky
– SYN cookies for SYN flood DDoS, etc.

▪ Largely unsuccessful efforts to secure DNS and routing
– DNSSEC, SBGP
– RPKI and MANRS

▪ Lots of academic papers on lots of other things

Issues

▪ Centralization magnifies impacts

▪ Decentralization is complicated, untrustworthy and hard to audit
– Dependencies are complex and unknown
– Trust doesn’t scale
– Integrity failures can be invisible

▪ Key protocol/service deployments are not well-tested against threats

▪ DDoS will always be with us

Centralization

▪ Economic forces encourage centralization
– Amplifies impact of failure or attack

▪ Physical network infrastructure
– Fiber, switching, interchange, etc
– Cell backhaul and towers
– Control over same (e.g., only really 3 cell carriers in US); iconectiv for number portability

▪ Cloud services
– Six companies deliver the majority of Web resources in Alex 1M [Doan et al, TOIT ‘22]. 1 of 3 scripts
▪ Huge internal networks that can frequently skip traditional transit providers

– Top 3 DNS, CA, and CDNs cover between 50-70% of top 100k sites
– Handful of operators run all the big gTLD registries
– Public resolvers (e.g., 1.1.1.1, 8.8.8.8) centralizing DNS resolution
– Microsoft and Google handle email for ~30-40% of all domains

Dependencies are complex and unknown

▪ Systems increasingly inter-dependent
– Cloud compute/hosting
– Web infrastructure
– Internal systems-as-a-service
– Key services (e.g., time)

▪ No straightforward way to establish dependency graph
– Where do my two ISPs have separate physical infrastructure?
– If AWS goes down, could that impact my network provisioning system?
– There are tons of “post mortems” full of such surprises
– i.e., its not in the architecture

▪ No real composition architecture for cloud services
– Lots of vulnerability at the interface between

▪ Lack of resilience is invisible – until failure

Trust doesn’t scale well
▪ Inevitably, for integrity, we want to establish statements that relate some claim to

some real-world property (e.g., when I go to amazon.com its Jeff Bezos’ shop)

▪ Our solution is to pass the buck to someone else and trust them
– CAs (200+) – some limited due diligence or domain control evidence – claim signed

cryptographically
– Registrars (2500+)– zero due diligence, claim controlled by limited access to EPP for given registry
– IRRs (5+15)– some limited due diligence (email in whois!), some cryptographic signing (RPKI), but

pretty open NRTM

▪ Consequence – everything can fall apart if one trusted entity gets compromised

Integrity failures can be invisible

▪ Decentralized protocols (e.g., DNS, BGP, CAs, etc) have great scaling properties but
are challenging to audit – no single state

▪ What happens if northwestern.edu was poisoned in a DNS resolver cache for
Comcast in Atlanta?
– How would you know?

▪ What happens if 129.105.0.0/16 (northwestner’s network) was hijacked for but only
for CENIC/CalREN?
– How would you know?

▪ What if these happened for only 10 minutes?

The authentication ouroboros

▪ We know DNS and BGP are vulnerable, so we rely on end-to-end integrity via TLS
– TLS validates that the other party has a valid certificate, signed by a CA, for the domain name

▪ LetsEncrypt and other CAs use domain validation to provide cheap due diligence for
awarding new certificates
– If you can hijack IP space of A record, or for NS server you can get valid CA
– Or (easier) you hijack the NS record directly (by compromising registrar account or registry)
– Transforms DNS/BGP capability into valid cert, undermining value of TLS

▪ This happens (see Akiwate et al, IMC 22) but its very hard to tell that it happened

▪ Current Internet architecture not designed for auditability
(But Certificate Transparency is a step in the right direction)

Key protocol deployments are not well-tested against threats

▪ Sometimes its because they are key production protocols
– BGP – how well would current Internet weather a handful of ASs flapping 100k routes?

 – what would happen if Google injected routes for all of AT&T and Verizon’s customers?
 (what about non-customer routes?)

▪ Sometimes its because they are proprietary implementations
– E.g., protocols use to replicate state inside Akamai, CloudFlare, Amazon, etc

▪ Or they are somewhat “invisible” and with limited access
– EPP is a great example; one of the invisible “back-end” protocols that run the show
– SS7 underneath everything
– An array of provisioning protocols in cellular, HFC, and Cable networks

▪ The solutions aren’t much different than they were 20 years ago
– Divert and to expensive box and clean if there is a clear content pattern
– Divert to CDN and spread load (but someone needs to pay)

▪ Still no cost-effective way to manage large-scale wanted vs unwanted traffic
outside your own network infrastructure

13

DDoS

▪ Centralization is cheap and useful; but magnifies rare failure

▪ Decentralization supports innovation and expansion, but
creates transitive trust relations and hence easier to attack

▪ We have no good theory about where to use one vs the other

▪ We have very limited visibility which hamstrings both
design for resilience and detection/triage of problems

14

Some ultimate issues

