



Current architecture priorities (JCD):

- Theory: SLS (SysLevelSyn), LAO (LayerAsOpt), Learning and control, Cyber and physical
- Cancer immunology (development, wounds, infections)
- Neuro, sensorimotor, language, mental illness
- Microbiomes, biofilms
- Social, political, economic



Current architecture priorities:

- Theory: SLS (SysLevelSyn), LAO (LayerAsOpt), Learning and control, Cyber and physical
- Cancer immunology (development, wounds, infections)
- Neuro, sensorimotor, language, mental illness
- Microbiomes, biofilms
- Social, political, economic (most intractable, most essential)
- Consciousness, feelings, free will (most confused)



Diversity-enabled sweet spots in layered architectures and speed-accuracy trade-offs in sensorimotor control

Yorie Nakahira, Quanying Liu, Terrence J. Sejnowski, and John C. Doyle **PNAS 2021** 



Simplest case that illustrates universal concepts?

### Laws, layers, levels, diversity, sweet spots, SLS

Cells Organisms Immune Sys Brains Language Societies Ecosystems Phones Computers Internet Power Utilities Vehicles Transport Supply Chains Buildings Cities Countries Finance Laws Judicial system Clothing Cooking Baking Legos

#### Function, protocols, virtual, flexible, evolve, adapt, fragile, hidden, hijacked



### Laws, layers, levels, diversity, sweet spots

| <mark>Cells</mark> | <mark>Cell (Phones)</mark> | Supply Chains   | Clothing |
|--------------------|----------------------------|-----------------|----------|
| Organisms          | Computers                  | Buildings       | Cooking  |
| Immune Sys         | Internet                   | Cities          | Baking   |
| Brains             | Power                      | Countries       | Legos    |
| Language           | Utilities                  | Finance         | •        |
| Societies          | Vehicles                   | Laws            |          |
| Ecosystems         | Transport                  | Judicial system |          |

Function, protocols, virtual, flexible, evolve, adapt, fragile, hidden, hijacked



### **Remarkably shared ParArch**



#### All (parallel) architectures: Laws, layers, levels, diversity, sweet spots

| Cells              |  |
|--------------------|--|
| Organisms          |  |
| Immune Sys         |  |
| Brains             |  |
| Medical physiology |  |
| Societies          |  |
| Ecosystems         |  |

Cell (Phones) Computers Internet Power Utilities Vehicles Transport Supply Chains Buildings Cities Countries Finance Laws Language Clothing Cooking Baking Legos

High impact science (noncontrol) publications: Science, Cell, PNAS, PRL, ...

- Big impact in engineering
- Minimal acceptance in science
- Eager to discuss in any level of detail
- Subject of this year's courses in CDS@Caltech















#### Evolve or Die: High-Availability Design Principles Drawn from Google's Network Infrastructure



Ramesh Govindan<sup>†</sup>\*, Ina Minei<sup>†</sup>, Mahesh Kallahalla<sup>†</sup>, Bikash Koley<sup>†</sup>, Amin Vahdat<sup>†</sup> <sup>†</sup>Google \*University of Southern California



Figure 1: Google's Global Network







Networked Swappable Diverse

## **Parallel architecture**





















# Virtual



# Virtual "automatic" "unconscious"

Layered



