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Is Decentralization good?
• In economics, the “efficient” market versus the “clumsy” 

central planner. 

• In control, decentralization means information constraints
 sacrifice performance, and difficult design. 
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• “Think globally act locally” is a non trivial mandate.



Decentralized control under weak coupling

• Design “thinking locally”

e.g: home thermostat

• Works if coupling is weak. 

• Resilience: localized failures.

• What if we allow local comm between neighboring controllers? 
Less trivial design, but recent progress (SLS). 

• Decentralized/localized control for Internet/Powergrid?

– Not obvious, depends on function. 

– Exploit special structure, interpret notion of “neighbor”.



Decentralization in the Internet
• Original architecture favors local control, plug & play.  

– Successful to achieve global connectivity. 

– Best effort, less worried about performance.

• Performance is highly coupled: 
sharing scarce resources.

• Kelly/Low (late 90s): 
– microeconomic models

– convex optimization

– Resource prices enable
“decentralized” control. 
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• To implement:
– Exploit inbuilt information path.

– Buffering allows transient mismatch. 



Internet – theory and practice
• Approach extends to other layers (routing, wireless MAC,…). 

Layering As Optimization Decomposition. 

Practical impact? nonzero, but not significant:

– Protocols are hard to modify. 

– Cheap fiber optics trumps smart resource allocation.

• At the network core, 

– Less buffering, need to overprovision. 

– Less tolerance to malfunction.

Traffic Engineering, centralized multicommodity flow 



Power transfer in Alternating Current
Grid Interconnection arose early on (1880s) to mutualize
generation, exploit economies of scale in power plants.
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AC became dominant: sinusoidal waveform : 
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Power network

Non-trivial to satisfy, even if global power balance holds. 
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Equilibrium:  
 Same frequency overall. 
 Approx nominal voltages: 
 Different phases per node ("bus"): 
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"Power Flow" (PF) conditions, in 
 simplified form:
 power balance at each node.

 line powers within limits  

 Phases consistent with line power      sin(flows ). 

Essentially no buffering Little tolerance for imbalance.  



At slow time-scales (minutes to hours)
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: minimize generation cost to cover demand. 

 PF restrictions matter, not feasible to overprovision network. 

 PF rules out naive market solutions (pairwise transaction
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System Operator (SO): 

 closes market under PF. 

 imposes security constraints. 

 solves for nodal prices. 
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Remarks:  

 Economic intuitions from transport networks may fail under PF.

 Less transparent solution, exacerbates market power.



Transport Network
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• Short term imbalance triggers global “swing” oscillations. 

• Machine inertia + decentralized “droop” control at machines 
determines evolution. Coupled oscillators, fragile dynamics. 

• Global metrics in P´-Mallada ´00.

Fast time-scales (seconds)
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• Has served us better than expected, but:
– The opposite of “plug and play”. Unit changes are “events”. 

– Difficult to rule out cascading events. Costly failures.    

– Survivable? Dynamic fragility, SO dependency.

• And the grid is changing: renewables, DERs, storage,…

Challenges of real-time balancing. 
• Decentralized control may stabilize (at best) to a different

frequency f. 

• Slower control loop, with SO intervention to restore nominal f, 
and power flows of economic dispatch. 

• Overall, combination of centralized/decentralized control.



A changing grid
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Discussion
Power grid control.

• More centralized: SO susceptible to failures/attacks. 

• More fragile: fast dynamics of coupled oscillators. 

• AC is partly to blame for both. Unlikely to change. 

• Power electronics or DC microgrids to the rescue?

Internet control. 
• Decentralized protocols can sustain basic connectivity.

• Performance: bandwidth scarcity has not been an issue,
but new demands arise (e.g. from AI).

• Centralization appears inside ISPs, or in cloud computing
infrastructures. New challenges to survivability. 

Mutual inter-dependence:
• Internet runs on power. Power markets rely on telecom. 
• Not clear to what degree control should be coordinated. 


