Decentralization/centralization in controlling the Internet and the power grid

> Fernando Paganini Universidad ORT Uruguay

NSF Workshop, Nov. 2023

Is Decentralization good?

- In economics, the "efficient" market versus the "clumsy" central planner.
- In control, decentralization means information constraints \rightarrow sacrifice performance, and difficult design.

• "Think globally act locally" is a non trivial mandate.

Decentralized control under weak coupling

- Design "thinking locally" e.g: home thermostat
- Works if coupling is weak.
- Resilience: localized failures.
- What if we allow local comm between neighboring controllers? Less trivial design, but recent progress (SLS).
- Decentralized/localized control for Internet/Powergrid?
 - Not obvious, depends on function.
 - Exploit special structure, interpret notion of "neighbor".

Decentralization in the Internet

- Original architecture favors local control, plug & play.
 - Successful to achieve global connectivity.
 - Best effort, less worried about performance.
- Performance is highly coupled: sharing scarce resources.
- Kelly/Low (late 90s):
 - microeconomic models
 - convex optimization
 - Resource prices enable "decentralized" control.
- To implement:
 - Exploit inbuilt information path.
 - **Buffering** allows transient mismatch.

Congestion control loop (Low-P'- Doyle, 01-02)

Characterized equilibrium & dynamic stability resulting from decentralized actions

Internet – theory and practice

Approach extends to other layers (routing, wireless MAC,...).
 Layering As Optimization Decomposition.

Practical impact? nonzero, but not significant:

- Protocols are hard to modify.
- Cheap fiber optics trumps smart resource allocation.

- At the network core,
 - Less buffering, need to overprovision.
 - Less tolerance to malfunction.
 - \rightarrow Traffic Engineering, centralized multicommodity flow

Power transfer in Alternating Current

Grid Interconnection arose early on (1880s) to mutualize generation, exploit economies of scale in power plants.

AC became dominant: sinusoidal waveform $V \operatorname{sen}(2\pi f \cdot t + \theta)$:

• Frequency f. e.g., 60 Hz. • Amplitude V. • Phase θ

Exchanged power depends on phase (angle) differences between rotating machines: $P_{12} = b_{12}V_1V_2 \sin(\theta_1 - \theta_2)$.

Power network

Equilibrium:

- Same frequency *f* overall.
- Approx nominal voltages: $V_i \approx V_{0i}$
- Different phases per node ("bus"):

 θ_i , i = 1, ..., N"Power Flow" (PF) conditions, in

- simplified form:
- power balance at each node.
- line powers within limits $\left| P_{ij} \right| \leq \overline{P}_{ij}$
- Phases θ_i consistent with line power flows $P_{ij} = b_{ij}V_iV_j$ $\sin(\theta_i \theta_j)$.

Non-trivial to satisfy, even if global power balance holds.

Essentially no buffering \Rightarrow Little tolerance for imbalance.

At slow time-scales (minutes to hours)

Economic dispatch: minimize generation cost to cover demand.

- PF restrictions matter, not feasible to overprovision network.
- PF rules out naive market solutions (pairwise transactions)

 \Rightarrow centralized optimization required.

System Operator (SO):

- closes market under PF.
- imposes security constraints.
- solves for nodal prices.

Remarks:

- Economic intuitions from transport networks may fail under PF.
- Less transparent solution, exacerbates market power.

Transport Network

- min $\sum_{n\in G} c_n(g_n)$, (gen. cost).
- s.t. flow balance at nodes.

line limits. Meet demand.

Properties:

- Non saturated link ⇒
 equal price nodes.
- flow goes "uphill in price".
- node prices $\in [c'_{\min}, c'_{\max}].$

Power Network

Add constraint between line flows ↔ node angles. Eliminates routing as a degree of freedom.

May observe:

- Price differences without local saturation. Downhill flows.
- Prices out of range, even <0 !
- "Braess"-like paradoxes.

Fast time-scales (seconds)

- Short term imbalance triggers global "swing" oscillations.
- Machine inertia + decentralized "droop" control at machines determines evolution. Coupled oscillators, fragile dynamics.
- Global metrics in P'-Mallada '00.

Challenges of real-time balancing.

- Decentralized control may stabilize (at best) to a different frequency *f*.
- Slower control loop, with SO intervention to restore nominal *f*, and power flows of economic dispatch.
- Overall, combination of centralized/decentralized control.
- Has served us better than expected, but:
 - The opposite of "plug and play". Unit changes are "events".
 - Difficult to rule out cascading events. Costly failures.
 - Survivable? Dynamic fragility, SO dependency.
- And the grid is changing: renewables, DERs, storage,...

A changing grid

- 1) Renewable sources (solar, wind):
 - Non-dispatchable, exogenous.
 - Subject to short term variations.

Impact in resource allocation:

- Slow time-scale: more challenging Economic Dispatch.
- Fast time-scale: power electronics connection (inverters) with no inertia. But also provide faster possibilities for control.

2) Distributed Energy Resources (DERs): Rooftop solar, EVs,

- Centralized dispatch infeasible, too many variables.
 Radial topology: simpler to manage locally
- 3) Network storage (batteries, etc.): more buffering

Discussion

Power grid control.

- More centralized: SO susceptible to failures/attacks.
- More fragile: fast dynamics of coupled oscillators.
- AC is partly to blame for both. Unlikely to change.
- Power electronics or DC microgrids to the rescue?

Internet control.

- Decentralized protocols can sustain basic connectivity.
- Performance: bandwidth scarcity has not been an issue, but new demands arise (e.g. from AI).
- Centralization appears inside ISPs, or in cloud computing infrastructures. New challenges to survivability.

Mutual inter-dependence:

- Internet runs on power. Power markets rely on telecom.
- Not clear to what degree control should be coordinated.