®

Check for
updates

BatteryLab: A Collaborative Platform
for Power Monitoring
https://batterylab.dev

Matteo Varvello'®) Kleomenis Katevas?, Mihai Plesa®, Hamed Haddadi®,
Fabian Bustamante?, and Ben Livshits®

! Bell Labs Nokia, Holmdel, USA
matteo.varvello@nokia.com
2 Telefonica Research, Madrid, Spain
kleomenis.katevas@telefonica.com
3 Brave Software, Santa Clara, USA
{mplesa,hhaddadi}@brave.com
4 Northwestern University, Evanston, USA
fabianb@cs.northwestern.edu
5 Imperial College London, London, UK
b.livshits@imperial.ac.uk

Abstract. Advances in cloud computing have simplified the way that
both software development and testing are performed. This is not true for
battery testing for which state of the art test-beds simply consist of one
phone attached to a power meter. These test-beds have limited resources,
access, and are overall hard to maintain; for these reasons, they often sit
idle with no experiment to run. In this paper, we propose to share existing
battery testbeds and transform them into vantage points of BatteryLab,
a power monitoring platform offering heterogeneous devices and testing
conditions. We have achieved this vision with a combination of hardware
and software which allow to augment existing battery test-beds with
remote capabilities. BatteryLab currently counts three vantage points,
one in Europe and two in the US, hosting three Android devices and one
iPhone 7. We benchmark BatteryLab with respect to the accuracy of its
battery readings, system performance, and platform heterogeneity. Next,
we demonstrate how measurements can be run atop of BatteryLab by
developing the “Web Power Monitor” (WPM), a tool which can measure
website power consumption at scale. We released WPM and used it to
report on the energy consumption of Alexa’s top 1,000 websites across 3
locations and 4 devices (both Android and i0S).

Keywords: Battery - Test-bed - Performance - Android - iOS

1 Introduction

Power consumption is a growing concern in the mobile industry, ranging from
mobile phone users, operating system vendors, and app developers. To accu-
rately measure a device power consumption, two options are currently available:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Hohlfeld et al. (Eds.): PAM 2022, LNCS 13210, pp. 97-121, 2022.
https://doi.org/10.1007 /978-3-030-98785-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98785-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-98785-5_5

98 M. Varvello et al.

=7

(L, ——

2

i§ NORTH

EAMERICA
®

et Pacific Ocean
R
%

b
, SOUTH Atlantic
\, AMERICA | Ocean
/

Indian
Ocean

@ Vantage Point | | @&~
. .

: E ¥
; Q Tester i i

—y X
£ 2%

b

Experimenter N\ A
S " ANTARCTICA -

Fig. 1. Distributed architecture of BatteryLab.

software-based measurements, which rely on battery readings from the device,
and hardware-based measurements which leverage an external power monitor
connected to a device battery. Software-based power measurements are easy to
use, but lack the accuracy and granularity an experimenter might require [15, 38].
Few startups [20,27] offer, for a price, improvements upon the accuracy of
software-based power measurements by relying on few devices for which they
have performed heavy “calibration” (their secret sauce). Hardware-based power
measurements are accurate, fine-grained, but quite cumbersome to setup.

For years, researchers have been building home-grown test-beds for hardware-
based power measurements, consisting of an Android device connected to a
high-frequency power monitor [13,14,21,40]. This required expertise in hard-
ware setup and writing code when automation is needed — code which is unfor-
tunately never shared with the community. Such closed-source test-beds have
limited accessibility, e.g., requiring physical access to the devices, and share-
ability, even among members of the same group. This became clear during the
COVID-19 pandemic: remote desktop tools like VNC came to the rescue, but
often the only solution was to move that precious test-bed at home.

In this paper we challenge the assumption that such battery test-beds need to
be “local” and propose BatteryLab, a cooperative platform for battery measure-
ments. We envision BatteryLab as a cooperative platform where members con-
tribute hardware resources (e.g., some phones and a power monitor) in exchange
for access to the resources contributed by other platform members. Neverthe-
less, the hardware/software suite we have built and open sourced [25] can also be
used “locally”, i.e., augmenting an existing battery test-bed with scheduling and
remote control capabilities. The following contributions are the founding blocks
of BatteryLab:

BatteryLab: A Collaborative Platform for Power Monitoring 99

Automation for Hardware-Based Power Measurements. BatteryLab
comes with an intrinsic automation requirement. For example, an experimenter
from Europe needs to be able to activate a power meter connected to a phone in
the US. To make this possible, we have designed vantage points as the above local
test-beds enhanced with a lightweight controller such as a Raspberry Pi [34]. The
controller runs BatteryLab’s software suite which realizes “remote power test-
ing”, e.g., from activating a device’s battery bypass to enabling remote control
of the device via the experimenter’s browser.

A Library for Android and iOS Automation. While the Android Debug-
ging Bridge (ADB) is a powerful tool to automate Android devices, an equiv-
alent does not exist for iOS. BatteryLab builds atop of ADB to offer seam-
less automation of Android devices. For iOS, we have built and open-sourced
a Python library which maps commands like touch, swipe, and text input to a
(virtual) Bluetooth keyboard and mouse. To the best of our knowledge, we are
the first to provide automation of any third party app on actual iOS devices
(i.e., other than simulators as in [6,36]). Even commercial products for iOS,
such as TeamViewer [39] or the recent SharePlay [7] of iOS 15, can only provide
remote screen sharing.

Usability Testing for Power Measurements. BatteryLab allows an experi-
menter to interact with a real device via its browser. This feature is paramount
for debugging automation scripts, but also a key enabler of usability testing, or
battery measurements coupled with actual device interactions from real users.

Deployment at Three Research Institutions. BatteryLab currently has
three vantage points, two in the US and one in Europe (with more vantage
points going live soon) and hosts a range of Android devices and an iOS device
(iPhone 7).

We evaluate BatteryLab on battery readings accuracy, system performance,
and platform heterogeneity. To illustrate the value and ease-of-use of Battery-
Lab, we have also built the “Web Power Monitor” (WPM), a service which
measures the power consumption of websites loaded via a test browser running
at any BatteryLab’s device. With a handful of lines of code, WPM allowed us
to conduct the largest scale measurement study of energy consumption on the
Web, encompassing Alexa’s top 1,000 websites measured from four devices and
two operating systems. We have released WPM as a web application integrated
with BatteryLab which offers such testing capabilities to the public, in real time.
This paper extends our previously published work [44] in many ways:

— We add support for device automation also to Apple iOS by exploiting the
Bluetooth HID and AirPlay services.

— We deploy BatteryLab at three research institutions and benchmark its per-
formance including, among others, a comparison with software-based battery
measurements.

— We open source BatteryLab’s code for “local” use, and BatteryLab as a
testbed for battery measurements.

100 M. Varvello et al.

— We develop and release WPM, a tool for measuring website power consump-
tion at scale; we further use WPM to measure the energy consumption of
Alexa’s top 1,000 websites across 3 locations and 4 devices.

— We explore support for usability testing via “action replay”, a mechanism to
automatically build app automation scripts based on human inputs.

2 BATTERYLAB Architecture

This section presents the design and implementation details of BatteryLab (see
Fig.1). Our current iteration focuses on mobile devices, but the architecture is
flexible and can be extended to other devices, e.g., laptops and IoT devices.

BatteryLab consists of a centralized access server that remotely manages
a number of nodes or vantage points. Each of these vantage points, hosted by
universities or research organizations around the world, includes a number of test
devices (a phone/tablet connected to a power monitor) where experiments are
carried out. BatteryLab members (ezperimenters) gain access to test devices via
the access server, where they can request time slots to deploy automated scripts
and/or remote control of the device. Once granted, remote device control can be
shared with testers, whose task is to manually interact with a device, e.g., scroll
and search for items on a shopping application. Testers are either volunteers,
e.g., recruited via email or social media, or paid, recruited via crowdsourcing
websites like Mechanical Turk [3].

In the remainder of this section, we describe BatteryLab’s main components
in detail. Next, we focus on BatteryLab’s automation capabilities and on the
procedure for new members to join the platform.

2.1 Access Server

The main role of the access server is to manage the vantage points and schedule
experiments on them based on experimenters’ requests. We built the access server
atop of the Jenkins [22] continuous integration system which is free, open-source,
portable (written in Java) and backed by an active and large community. Jenkins
enables end-to-end test pipelines while supporting multiple users and concurrent
timed sessions.

BatteryLab’s access server runs in the cloud (Amazon AWS) which enables
further scaling and cost optimization. Vantage points have to be added explic-
itly and pre-approved in multiple ways (IP lockdown, security groups). Experi-
menters need to authenticate and be authorized to access the web console of the
access server, which is only available over HT'TPS. The access server commu-
nicates with the vantage points via SSH. New BatteryLab members grant SSH
access from the server to the vantage point’s controller via public key and IP
white-listing (Sect. 3.4).

Experimenters access vantage points via the access server, where they can
create jobs to automate their tests. Jobs are programmed using a combination
of BatteryLab’s Python API (Tablel), e.g., for user-friendly device selection

BatteryLab: A Collaborative Platform for Power Monitoring 101

Power Monitor Power Socket

Circuit
Switch By

Controller

Test Devices

Fig. 2. Vantage point design.

and interaction with the power meter, and code specific to each test. Only the
experimenters who have been granted access to the platform can create, edit,
or run jobs and every pipeline change has to be approved by an administrator.
This is done via a role-based authorization matrix.

After the initial setup, the access server dispatches queued jobs based on the
experimenter constraints, e.g., target device, connectivity, or network location,
and BatteryLab constraints. For example, no concurrent jobs are allowed at the
same vantage point since the power monitor can only be associated with one
device at a time and isolation is required for accurate power measurements. By
default, the access server collects logs from the power meter which are made
available for several days within the job’s workspace. Android logs (e.g., logcat
and dumpsys) can be requested via the execute_command API for the supported
devices (Table1).

2.2 Vantage Point

Figure 2 shows a graphical overview of a BatteryLab’s vantage point with its
main components: controller, power monitor, test devices, circuit switch, and
power socket.

Controller — This is a Linux-based machine responsible for managing the van-
tage point. This machine is equipped with both Ethernet, WiFi and Bluetooth
connectivity, a USB controller with a series of available USB ports, as well as
with an external General-Purpose Input/Output (GPIO) interface. We use the
popular Raspberry Pi 3B+ [34] running Raspberry Pi OS (Buster, September
2019) that meets these requirements at an affordable price.

The controller’s primary role is to manage connectivity with test devices.
Each device connects to the controller’s USB port, WiFi access point (config-
ured in NAT or Bridge mode), and Bluetooth, based on automation needs (see

102 M. Varvello et al.

Sect. 3.2). USB is used to power each testing device when not connected to the
power monitor and to instrument Android devices via the Android Debugging
Bridge [19] (ADB), when needed. WiFi provides Internet access to all devices
and extend ADB automation and device mirroring to Android devices without
incurring the extra USB current, which interferes with the power monitoring pro-
cedure. (De)activation of USB ports is realized using uhubctl [43]. Bluetooth
is used to realize automation across OSes (Android and iOS) and connectivity
(WiFi and cellular).

The second role of the controller is to provide device mirroring, i.e., remote
control of device under test. We use VNC (tigervnc [41]) to enable remote
access to the controller, and noVNC [31], an HTML VNC library and application,
to provide easy access to a VNC session via a browser without additional software
required at the experimenter/tester. We then mirror the test device within the
noVNC/VNC session and limit access to only this visual element. In Android,
this is achieved using scrcpy [18], a screen mirroring utility which runs atop of
ADB for devices running API 21 (Android > 5.0). In i0S, we utilize AirPlay
Screen Mirroring [8] using RPiPlay [17], an AirPlay mirroring server for devices
running iOS > 9.0.

We have also built a graphical user interface (GUI) around the default noVNC
client. The GUI consists of an interactive area where a device screen is mirrored
(bottom of the figure) while a user (experimenter or tester) can remotely mouse-
control the physical device, and a toolbar that occupies the top part of the GUI
and implements a convenient subset of BatteryLab’s API (see Table1).

Power Monitor — This is a power metering hardware capable of measuring the
current consumed by a test device in high sampling rate. BatteryLab currently
supports the Monsoon HV [29], a power monitor with a voltage range of 0.8V to
13.5V and up to 6A continuous current sampled at 5 KHz. The Monsoon HV is
controlled using its Python API [30]. Other power monitors can be supported,
granted that they offer APIs to be integrated with BatteryLab’s software suite.

Test Device(s) — It is an Android or iOS device (phone or tablet) that can be
connected to a power monitor using a battery bypass modification (i.e., isolate
the battery power circuit and provide power via the power monitor). While
devices with removable batteries are easier to setup, more complex configurations
(e.g., all iOS and recent Android devices) are also supported by doing the battery
bypass modification at the battery controller level.

Circuit Switch — This is a relay-based circuit with multiple channels that lies
between the test devices and the power monitor. The circuit switch is connected
to the controller’s GPIO interface and all relays can be controlled via software
from the controller. Each relay uses the device’s voltage (+) terminal as an input,
and programmatically switches between the battery’s voltage terminal and the
power monitor’s Vout connector. Ground (-) connector is permanently connected
to all devices’ Ground terminals.

This circuit switch has three main tasks. First, it allows to switch between a
direct connection between the phone and its battery, and the “battery bypass”—

BatteryLab: A Collaborative Platform for Power Monitoring 103

Table 1. BatteryLab’s core API.

API Description Parameters

list_nodes List matching vantage |label, state
points

list_devices List identifiers of test vantage_point
devices

device_mirroring | Activate device device_id
mirroring

power_monitor Toggle Monsoon power | state (on/off)
state

set_voltage Set target voltage voltage_val

start_monitor Start battery device_id, duration
measurement

stop_monitor Stop battery -
measurement

batt_switch (De)activate battery device_id

execute_.command | Execute a command on | device_id, command,
device automation

which implies disconnecting the battery and connecting to the power monitor.
This is required to allow the power monitor to measure the current consumed
during an experiment. Second, it allows BatteryLab to concurrently support
multiple test devices without having to manually move cables around. Third, it
allows to programmatically switch the power meter on and off.

Power Socket — This is a relay-based power socket that allows the controller
to turn the Monsoon on and off, when needed. It connects to the controller via
the GPIO port, and it is controlled by our Python API.

3 Using BatteryLab

In the following paragraphs we illustrate the use of BatteryLab’s API, discuss
its support of test automation, and the generation of automation scripts from
human input. We close the section with a description of the steps needed to join
BatteryLab.

3.1 API Usage

Experimenter jobs are interleaved with “control” jobs which manage the vantage
points, e.g., they update BatteryLab wildcard certificates (Sect. 3.4) and ensure
that the power meter is not active when not needed (for safety reasons). We
here present some of these jobs as examples of BatteryLab’s API usage. We
have chosen the set of jobs that are also used by the application we have built

104 M. Varvello et al.

atop of BatteryLab (Sect.5). Note that these jobs effectively extend the API
available to BatteryLab’s experimenters; these are not listed in Table1 which
focuses only on core API.

NODE_SETUP — The goal of this job/API is to prepare a vantage point for
power measurements on a device d. This implies activating the power meter
(power_monitor), offering the voltage that d requires (set_voltage) and acti-
vating the relay to realize d’s battery bypass (batt_switch). The job continues
by verifying that WiF1i is properly working, eventually switching frequency based
on the device characteristics—with 5 GHz preferred, when available. Based on
the device and the requested automation (see Sect.3.2), the job continues by
either activating ADB over WiFi or the Bluetooth HID service. Finally, USB con-
nection is interrupted—to avoid noise on the power measurements—and device
mirroring is activated, if needed (device mirroring).

DEVICE_SETUP — The goal of this job/API is to prepare a device d such that
“noise” on the upcoming power measurement is minimized. We have identified
several best practices which help in doing so and we offer them as an API. Nev-
ertheless, the experimenter is the ultimate decision maker and can either ignore
or further improve on these operations. The job starts by disabling notifications,
set the device in airplane mode with WiFi only activated—unless a mobile con-
nection is needed and available—and close all background apps. Next, the job
ensures that the device is not using automatic brightness and further sets the
brightness to a default value or a requested one. The last step is important since
the variation in ambient light can impact the outcome of a measurement.

CLEANUP — The goal of this job/APT is to ensure that a vantage point is in a “safe”
state. This implies turning off the power meter if no testing job is undergoing and
removing any eventual battery bypass. Finally, USB connectivity is re-enabled
which ensures that the device’s battery get charged. This job further proceeds
removing installed apps which were not used in the last seven days, with the
goal to avoid overloading testing devices.

REFRESH — The goal of this job/API is to verify reachability of vantage points
and devices therein. The information collected is used to populate a JSON file
which enhances Jenkins data past sites reachability via SSH. This job currently
runs across the whole platform every 30 min.

3.2 Android/iOS Automation Library

BatteryLab provides a Python library—which we open-sourced together with the
BatteryLab’s code—that greatly simplifies test automation on both Android and
i0S. At high level, the library offers APIs like input (tap, x, y) which map to
several underlying automation mechanisms, each with its own set of advantages
and limitations. The library automatically switches to an automation solution
based on the experiment needs, e.g., device and connectivity, hiding unnecessary
complexity to the experimenter.

BatteryLab: A Collaborative Platform for Power Monitoring 105

Android Debugging Protocol (Android) — ADB [19] is a powerful tool/
protocol to control an Android device. Commands can be sent over USB, WiFi,
or Bluetooth. While USB guarantees highest reliability, it interferes with the
power monitor due to the power required to activate the USB micro-controller
at the device. Accordingly, BatteryLab’s automation library uses ADB over USB
whenever the power monitor is not used, e.g., when installing an app or clean-
ing a device, while resorting to WiFi (or Bluetooth) for all other automations.
Note that using WiFi implies not being able to run experiments leveraging the
mobile network. However, these experiments are possible leveraging Bluetooth
tethering, when available.

Bluetooth HID Service (i0S/Android) — Automating third-party apps in i0S
is challenging due to the lack of ADB-like API. Even commercial solutions like
TeamViewer [39] or the new SharePlay [7] of i0S 15 limit their iOS offering to
remote screen viewing only. The only solution to control an iOS device without
physical access requires using a wireless keyboard and mouse. We exploit this
feature to map commands like touch, swipe and text input into (virtual) mouse
and keyboard actions.

Specifically, we virtualize the mouse and keyboard by designing a Human
Interface Device (HID) service [11] atop of BlueZ Bluetooth Protocol Stack [12]
v5.43. The controller broadcasts a custom Combo Keyboard/Pointing HID ser-
vice (i.e., HIDDeviceSubclass: 0xCO [11]) which enables a connection to previ-
ously paired test devices over Bluetooth. The automation library translates key-
board keystrokes, mouse clicks and gestures into USB HID Usage Reports [42]
that simulate user actions to the controlled device (e.g., locate an app, launch
it, and interact with it). While we exploit this automation strategy for iOS only,
the approach is generic and can be used across all devices which support the
Bluetooth HID profile for both mouse and keyboard (i.e., Android v8.0+ and
iOS v13.04).

3.3 Action Replay

Regardless of the automation mechanism used, building automation scripts for
mobile devices is a time consuming task [24,32,35]. Device mirroring offers a
unique opportunity to speed up the generation of such automation scripts in
BatteryLab. The key idea is to record an experimenter/tester clicks, mouse,
keyboard input, and use them to generate an automation script.

We have thus modified noVNC — precisely mouse. js and keyboard. js — to
POST the collected user input to the controller’s web application (see Sect.2.2)
where the device being mirrored is hosted. The web application collects the user
input and map it to APIs from the above automation library, which translates
into, for example, an ADB command such as tap or swipe. When screen coordi-
nates are involved, e.g., for a tap command, the actual coordinates are derived
by offsetting the coordinates recorded in noVNC as a function of the size of the
VNC screen and the actual device size. Under the assumption that an applica-
tion GUI is similar across platforms, the human-generated automation script at
a given device could be re-used for other devices.

106 M. Varvello et al.

3.4 How to Join?

Joining BatteryLab is straightforward and consists of three steps. First, the van-
tage point needs to be physically built as described in Fig.2. At this point, the
controller (Raspberry Pi) should also be flashed with the latest Raspberry Pi
OS image along with some standard setup as described in the associated tuto-
rial [9]. Second, the network where the controller is connected (via Ethernet)
needs to be configured to allow the controller to be reachable at the follow-
ing configurable ports: 2222 (SSH, access server only)!, 8080 (web application
for GUI and action/replay). Third, a BatteryLab account should be created for
the new member. This involves downloading the access server’s public key—
to be authorized at the controller—and uploading a human readable identi-
fier for the vantage point (e.g., nodel), and its current public IP address. This
information is used by the access server to add a new entry in BatteryLab’s
DNS (e.g., nodel.batterylab.dev)—provided by Amazon Route53 [5]—and
verify that SSH access to the new vantage point is now granted. Since the whole
BatteryLab traffic is encrypted, a wildcard letsencrypt [23] certificate is dis-
tributed to new members by the access server, which also manages its renewal
and distribution, when needed.

The next step consists of installing BatteryLab’s software at the controller.
This step is realized automatically by BatteryLab’s access server and it is the first
job to be deployed at the new vantage point. At high level, this consists in the
following operations. First, the OS is updated. Next, common security practices
are enforced: 1) install fail2ban which neutralizes popular brute-force attacks
over SSH, and 2) disable password authentication for SSH. Next, BatteryLab
code is pulled from its open source repository [25] along with all packages and
software needed. Code is compiled, where needed, and packages are installed.
Then, the controller is turned into an “access point” where the test devices will
connect to. By default, the access point spins a new SSID (BatteryLab) with
a pre-set password operating on 2.4 GHz. However, BatteryLab automatically
switches to 5 GHz for devices that support it. This “switch” is required since
the Raspberry Pi does not mount two WiFi antennas and thus both frequencies
cannot be active at the same time.

Next, several crontab entries are added. At reboot and every 30 min, a task
monitors the controller’s public IP address and update its entry at BatteryLab’s
DNS. At reboot, the GPIO pins used by BatteryLab are set as “output” and
the IP rules needed by the controller to act as an access point are restored.
The next step consists in setting up device mirroring, i.e., VNC password and
wildcard certificate used by both noVNC and the web application. This setup
job also learns useful information about the devices connected: ADB identifier
(if available), screen resolution, IP address, etc. This information is reported to
the access server to further populate the JSON file maintained by the REFRESH
job/API. Last but not least, several tests are run to verify: 1) Monsoon connec-
tivity, 2) device connectivity, 3) circuit relay stability, 4) device mirroring.

! The SSH agent at the node also needs to be configured accordingly. An iptable rule
should be added to limit access to the access server only.

BatteryLab: A Collaborative Platform for Power Monitoring

Table 2. BatteryLab test-bed composition.

J7DUO IPHONE7 SMJ337A LMX210
Vendor Samsung Apple Samsung LG
(ON] Android 9.0 iOS 13.2.3 Android 8.0.0 | Android 7.1.2
Location | United United New Jersey Illinois
Kingdom Kingdom
CPU Info | Octa-core Quad-core Quad-core Quad-core
(2x2.2 GHz 2.34 GHz 1.4 GHz 1.4GHz
Cortex-AT73, Apple A10 Cortex-Ab3 Cortex-Ab3
6x1.6 GHz Fusion
Memory |4GB 2GB 2GB 2GB
Battery | 3,000mAh 1,960 mAh 2,600 mAh 2,500 mAh

107

BatteryLab currently counts three vantage points located in the UK, New
Jersey, and Illinois, with a total of three Android devices and one iPhone 7.
Table 2 provides detailed information of the devices currently available to the
public via BatteryLab. At the time of writing, three other organizations are in
the process of setting up a BatteryLab vantage point.

4 Benchmarking

This section benchmarks BatteryLab. We first evaluate its accuracy in reporting
battery measurements. We then evaluate its performance with respect to CPU,
memory, and responsiveness of its device mirroring mechanism. We then inves-
tigate BatteryLab’s heterogeneity and the feasibility of usability testing when
coupled with power monitoring.

4.1 Accuracy

Compared to a classic local setup for device performance measurements, Bat-
teryLab introduces some hardware (circuit relay) and software (device mirroring)
components that can impact the accuracy of the measurements. We devised an
experiment where we compare three scenarios. First, a direct scenario consist-
ing of the Monsoon power meter, the testing device, and the Raspberry Pi to
instrument the power meter. For this setup, we strictly followed Monsoon indi-
cations [29] in terms of cable type and length, and connectors to be used. Next
we evaluate a relay scenario, where the relay circuit is introduced to enable Bat-
teryLab’s programmable switching between battery bypass and regular battery
operation (see Sect.2.2). Finally, a mirroring scenario where the device screen
is mirrored to an open noVNC session. While the relay is always “required” for
BatteryLab to properly function, device mirroring is only required for usability
testing. Since we currently do not fully support usability testing for iOS (see
Sect. 2.1), we here only focus on Android.

108 M. Varvello et al.

1.0 -
0.8 1
=
é 0.6 -
[T
8 0.4
' —»— direct
-¥- relay
0.2 —e— direct-mirroring
-e- relay-mirroring

200 400 600 800 1000
Current (mA)

Fig. 3. CDF of current drawn (direct, relay, direct-mirroring, relay-mirroring).

Figure 3 shows the Cumulative Distribution Function (CDF) of the current
consumed in each of the above scenarios during a 5 min test. For completeness, we
also consider a direct-mirroring scenario where the device is directly connected
to Monsoon and device mirroring is active. During the test, we play an MPEG4
video pre-loaded on the SD card of the device (JTDUO, UK). The rationale is
to force the device mirroring mechanism to constantly update as new frames are
initiated. The figure shows negligible difference between the “direct” and “relay”
scenarios, regardless of the device mirroring status being active or not. A larger
gap (median current grows from 160 to 220 mA) appears with device mirroring.
This is because of the background process responsible for screencasting to the
controller which causes additional CPU usage on the device (~15%). At the end
of this section, we investigate a more challenging usability testing scenario along
with a potential solution to minimize the additional power consumption caused
by device mirroring.

A related question is: what is the accuracy that BatteryLab offers compared
to software measurements? Having verified that BatteryLab is as accurate as
a local setup, and granted that hardware-based battery measurements are the
“ground truth”, the question is really how accurate are software-based battery
measurements? While this question is out of scope for this paper, it has to be
noted that Android software-based battery readings can be realized in Battery-
Lab via ADB2. With respect to iOS, while some high level energy usage reports
are available—reporting battery consumption every second on an arbitrary 0
to 20 scale—they are currently unavailable to BatteryLab since they require a
developer-enabled macOS.

2 Either using Android bug-report files or with adb shell cat sys/class/power.
supply/*/uevent.

BatteryLab: A Collaborative Platform for Power Monitoring 109

T T
—%— hardware
600 1 —e— software

500 -

400

Current (mA)

II3=100 B=150 p:?oo ;
20 40 60
Time (sec)

Fig. 4. Current over time under variable screen brightness (B) from 0 to 250, Android’s
max value. Software versus hardware measurements (LMX210).

We find that pure software measurements are enough to identify trends in
measured current, but have limited overall accuracy and granularity, e.g., a 30s
reporting frequency across all our Android devices. As an example, Fig. 4 shows
the time evolution of the current measured via BatteryLab (hardware) and soft-
ware while increasing the screen brightness from minimum (0) to maximum (250)
by 50 units over 60 s, as indicated by the vertical dashed lines. This plot shows
that pure software measurements are enough to identify trends, but have lim-
ited overall accuracy and granularity — while the plot refers to the LMX210, we
measured a similar reporting frequency (30s) across all Android devices.

To further investigate the reporting frequency, we have performed the same
test also on Samsung’s Remote Test Lab [37].> We find a 10's reporting frequency
on Samsung Galaxy S5 (Android 6) and S7 (Android 8), and 30s on S8 and S9
(Android 9). When repeating the same tests on newer models, we find that the
reported sampling rate improves to a mean of 2.23 s (+1.65) for Google Pixel 3a
(Android 12), 0.66 (£0.24) for Google Pixel 4 (Android 12) and 0.60 (£0.25) for
Google Pixel 5. The sampling rate was unaffected from different configurations
(screen on, off, or streaming a HD video). Note that internal battery readings
can be enhanced with additional data (e.g., cpu, screen usage), alongside device
calibration, to achieve higher accuracy, as discussed in [15].

4.2 System Performance

Next, we benchmark overall BatteryLab performance. We start by evaluating the
CPU utilization at the controller. Figure 5 shows the CDF of the CPU utilization
during the previous experiments (when a relay was used) with active and inactive
device mirroring, respectively. When device mirroring is inactive, the controller is

3 These tests were not possible on AWS Device Farm [4] due to lack of ADB access.

110 M. Varvello et al.

1.0
0.8 1
~ 0.6
e
a
o) 0.4 1
0.2
______ —— Mirroring=0ON
0.0 1 === Mirroring=OFF
0 20 40 60 80 100

CPU (%)

Fig. 5. CDF of CPU consumption at the controller (Raspberry Pi 3B+)

mostly underloaded, i.e., constant CPU utilization at 25%. This load is caused by
the communication with the power meter to pull battery readings at the highest
frequency (5 kHz). With device mirroring, the median load increases to ~75%.
Further, in 10% of the measurements the load is quite high and over 95%.

Device mirroring only impacts the CPU usage. The impact on memory con-
sumption is minimal (extra 6%, on average). Overall, memory does not appear
to be an issue given less than 20% utilization of the Raspberry Pi’s 1 GB. The
networking demand is also minimal, with just 32 MB of upload traffic for a
~7min test (due to device mirroring). Note that we set scrcpy’s video encoding
(H.264) rate to 1 Mbps, which produces an upper bound of about 50 MB. The
lower value depends on extra compression provided by noVNC.

Finally, we investigate the “responsiveness” of device mirroring. We call
latency the time between when an action is requested (either via automation
or a click in the browser), and when the consequence of this action is displayed
back in the browser, after being executed on the device. This depends on a num-
ber of factors like network latency (between the browser and the test device),
the load on the device and/or the controller, and software optimizations. We
estimate such latency by recording audio (44,100 Hz) and video (60 fps) while
interacting with the device via the browser. We then manually annotated the
video using ELAN multimedia annotator software [46] and compute the latency
as the time between a mouse click (identified via sound) and the first frame with
a visual change in the app. We repeat this test 40 times while co-located with
the vantage point (1 ms network latency) and measure an average latency of 350
(+80) ms.

4.3 Devices and Locations

BatteryLab’s distributed nature is both a feature and a necessity. It is a fea-
ture since it allows battery measurements under diverse device and network

BatteryLab: A Collaborative Platform for Power Monitoring 111

300
— J7DUO-wifi-off LMX210-wifi-off
— SMJ337A—wifi-off e |PHONE 7-wifi-off
200+
<100 -
= 0 100 200 300 400 500 600
€300
-} = |7DUO-5Ghz LMX210-2.4Ghz
O = SM)337A-2.4Ghz = |PHONE7-5Ghz
200-
&W wmﬂﬁtmdczc
100 { |

0 100 200 300 400 500 600
Time (sec)

Fig. 6. Time evolution of current usage per device at rest (WiFi off and on).

conditions which is, to the best of our knowledge, a first for research and devel-
opment in this space. It is a necessity since it is the way in which the platform can
scale without incurring high costs. We here explore the impact of such diversity
on battery measurements.

Figure 6 displays the evolution over time (600s) of the current used by each
BatteryLab device at “rest”, i.e., displaying the default phone desktop after hav-
ing run BatteryLab’s API DEVICE_SETUP (Sect.2.1) to ensure equivalent device
settings. We further differentiate between the case when WiFi was active or
not. For Android, regardless of WiF1i settings, the figure shows that the J7TDUO
consumes the most, while the LMX210 consumes the least — about 25% less
(270 vs 359J over 600s). Overall, the similar results in the case without WiFi
suggest that the difference between the device is intrinsic of the device configu-
rations, e.g., more power-hungry hardware and different Android versions with
potential vendor customization. Understanding the event responsible of the vari-
ations shown in Fig. 6 is out of the scope of this analysis. It is worth noticing
some correlations between peaks suggesting vendor specific operations, e.g., the
peak around 580s for the JTDUO and SMJ337A, both Samsung devices. The
IPHONET consumes the least when considering active WiFi, while the LM X210
consumes the least in absence of WiFi. The take away of this analysis is that
BatteryLab’s devices (and locations) have the potential to offer a large set of
heterogeneous conditions for the experimenters to test with.

Next, we compare the performance of the same device at different locations.
Since we do not have such testing condition, we emulate the presence of one

112 M. Varvello et al.

Table 3. ProtonVPN statistics.

Speedtest server (Kms) | Download (Mbps) | Upload (Mbps) | Latency (ms)
South Africa 6.26 9.77 222.04
Johannesburg (3.21)

China 7.64 .77 286.32
Hong Kong (4.86)

Japan 9.68 7.76 239.38
Bunkyo (2.21)

Brazil 9.75 8.82 235.05
Sao Paulo (8.84)

CA, USA 10.63 14.87 215.16
Santa Clara (7.99)

device (J7TDUOQ) at different locations via a VPN. We use a basic subscription
to ProtonVPN [33] set up at the controller. Table 3 summarizes five locations we
choose, along with network measurements from SpeedTest (upload and download
bandwidth, latency). VPN vantage points are sorted by download bandwidth,
with the South Africa node being the slowest and the California node being the
fastest. Since the SpeedTest server is always within 10 km from each VPN node,
the latency here reported is mostly representative of the network path between
the vantage point and the VPN node.

Next, we leverage WPM (see Sect.5) to investigate the battery consump-
tion of Chrome in comparison to a new privacy-preserving browser (Brave). We
assume a simple workload where each browser is instrumented to sequentially
load 10 popular news websites. After a URL is entered, the automation script
waits 6s — emulating a typical page load time (PLT) — and then interact with
the page by executing multiple “scroll up” and “scroll down” operations.

Figure 7 shows the average energy consumption (J) over 5 runs (standard
deviation as errorbars) per VPN location and browser. The figure does not show
significant differences among the battery measurements at different network loca-
tion. For example, while the available bandwidth almost doubles between South
Africa and California, the average discharge variation stays between standard
deviation bounds. This is encouraging for experiments where BatteryLab’s dis-
tributed nature is a necessity and its noise should be minimized.

Figure 7 also shows an interesting trend when comparing Brave and Chrome
when tested via the Japanese VPN node. In this case, Brave’s energy consump-
tion is in line with the other nodes, while Chrome’s is minimized. This is due
to a significant (20%) drop in bandwidth usage by Chrome, due to a systematic
reduction in the overall size of ads shown in Japan. This is an interesting result
for experiments where BatteryLab’s distributed nature is a feature.

BatteryLab: A Collaborative Platform for Power Monitoring 113

175

150
s REkLE B
> oc [T kX l
o 100 o EE -
0 75 »o [—— SOUTH AFRICA
w | S [—— BRAZIL

50 so I —— HONG KONG

5 | Co I+ —— JAPAN

2 H —— Us-CA
0 oc TN ¢ wa
e «
‘o((:(\(0

Fig. 7. Brave and Chrome energy consumption measured through VPN tunnels.

4.4 Usability Testing

The above analysis indicates that the extra (CPU) cost of device mirroring can
invalidate the power measurements reading. Accordingly, our recommendation
is to only leverage device mirroring when debugging an application over Bat-
teryLab, but then disable it during the actual power measurements. This is not
possible in case of usability testing where, by definition, a remote tester requires
access to a device.

“Action replay” (see Sect.3.3) is a potential solution to this limitation. The
intuition is that a usability test can be split in two parts. First, the tester per-
forms the required test while action replay is used to record her actions. Then,
the tester’s actions are replayed without the extra cost associated with device
mirroring. While this approach provides, in theory, better accuracy, record and
replay of human actions is challenging.

Figure 8 shows current measured over time at SMJ337A when a human inter-
acts with the news workload in Brave (action curve), versus a bot generated by
the action replay tool (replay curve). The figure shows overall lower current
usage in the replay case versus the action case, resulting in an overall lower
energy consumption: 345 versus 399J over 380s. The figure also shows high
correlation between the two curves, suggesting accurate replay. Nevertheless,
the overall error for energy estimation is fairly low (about 10%) and overall
constant, similar to what suggested by Fig. 3 and now confirmed in a more chal-
lenging scenario.

Record and replay of human actions is generally challenging. Not all appli-
cations behave equally between successive runs. For example, in our testing
scenario, a webpage could suddenly slow down and the replay might fail to click
on an article that was not loaded yet. This opens up a potential interesting
research area of building ML-driven tools for app testing based on human input,

114 M. Varvello et al.

400 -

Current (mA)
N
(9]
o

150 1 —— replay
—— action

0 100 200 300
Time (sec)
Fig. 8. Evolution over time of current (mA) measured during “action” (one human

interacting with 10 news websites in sequence) and “replay” (a bot reproducing human
activity).

as previously discussed in [2]. This is currently out of the scope of this work, but
pairing such research with device behavior monitoring is an interesting avenue
for future work.

5 The Web Power Monitor

There is an increasing interest in understanding the power drawn by modern
websites and browsers [13,14,40], especially on smartphones due to inherent bat-
tery constraints. Although different, these studies share a scalability limitation:
1) they most target a single Android device, 2) they only test 100 websites or
less accessed from a single location. This is because of the intrinsic limitations of
the test-bed used which BatteryLab aims at solving. In the following, we present
the “Web Power Monitor” (WPM), a BatteryLab application which enable large
scale measurements of energy consumption in the Web. WPM currently powers
a Web service [10] which offers such testing capabilities to the public, in real
time.

5.1 Design and Implementation

Back-end — This is a Jenkins job whose goal is to report on the power consumed
by a webpage when loaded on a BatteryLab device via a desired browser. Algo-
rithm 1 shows the pseudocode describing such job; for simplicity, we omit the
part of the job that takes care to identify where this test should run, i.e., either
a specific device or a vantage point. As a first step (L1), the job prepares the
vantage point by calling NODE_SETUP (see Sect. 3.1) which activates power mon-
itoring and device mirroring, if requested. Next, the device is prepared for the
test using DEVICE_SETUP (L2), also described in Sect. 3.1.

BatteryLab: A Collaborative Platform for Power Monitoring 115

Algorithm 1: Pseudocode for WPM’s backend.

Input: Device device, URLs to be tested url_list, Browser browser, Number
of repetitions reps, Power flag power, Visual flag visual, Automation
automation

Output: JSON file with performance metrics

1 node_status < NODE_SETUP(power, visual)

2 device_status «— DEVICE_SETUP(device)

3 for r — 0 to reps do

4 BROWSER_SETUP(device, browser)

5 RUN_TEST(device, browser, url_list, automation)
6 end

7 device_status — CLEANUP (device)

Next is BROWSER_SETUP (L3), where the browser is i) installed (if needed),
ii) cleaned (cache and configuration files), and iii) freshly started, e.g., Chrome
requires to go through an onboarding process when launched for the first time.
This function is equivalent to what an experimenter would have to design for a
local experiment, with the caveat that it has to be tested on a range of devices.
BatteryLab further simplifies this task for an experimenter via the “action
replay” module (see Sect. 3.3) which generates automation scripts from human
input collected via BatteryLab’s browser interface.

The next step is RUN_TEST (L5) where a list of URLs (url_list) is tested. The
experimenter defines how URLs should be loaded, e.g., sequentially in a new
tab. The experimenter also controls whether to perform a simple load, i.e., load
the page for a fixed amount of time, or interact with each page, e.g., scroll
the page up and down multiple times for a certain duration. Finally, CLEANUP
(see Sect. 3.1) is invoked to restore the node state (e.g., turn off the power meter)
and, if needed, expose the collected data to the front-end.

Front-end — This is inspired by webpagetest [45], a tool for measuring webpage
load times. Similarly, WPM offers a simple Web interface where a visitor can
choose the URL to test, the browser, the device (along with where this device
is located in the world) and which test to run. Power measurements are always
collected, while visual access to the device needs to be explicitly requested. If
so, the front-end alerts the user that this condition might impact the absolute
value of the measurements, as discussed in Sect. 4.

Once the requested test is submitted, the user is presented with a page
showing the progress of the experiment. If visual access was requested, as
DEVICE_SETUP is completed, an iframe is activated on the page to show the
requested device in real time. At the end of RUN_TEST, several plots are shown
on screen such as CPU and current consumption during the test. We invite the
interested reader to try out WPM at [10].

Front-end information (locations, devices, and browsers available) is main-
tained by the REFRESH job (see Sect. 3.1) and then retrieved as a JSON file via an

116 M. Varvello et al.

Table 4. WPM'’s measurement study versus previous works.

Study | OSes Devices | Websites | Locations
[40] | Android 1 25 1
[14] | Android 1 80 1
(13] | Android 1 100 1
WPM | Android/iOS | 4 715 3

AJAX call. Similarly, the status of the experiment is pulled over time to switch
between showing the remote device or results, when available.

5.2 Results

We used WPM to study the power consumption of Alexa’s top 1,000 websites
from 3 Android devices (NJ, IL, and UK) and one iPhone 7 (UK). We assume
a simple load, where each page is loaded for up to 30s. We load each page 3
times (with browser cache cleanup in between), and then report on the median
for each metric. We synchronize experiments at the different locations using a
2min fixed duration. The iOS test was not synchronized (one day delay) since
only one testing device can be measured at a time per location.

To limit the scope (and duration) of this test, we only experiment with a sin-
gle browser. We choose Brave, rather than Chrome as done in related work, since
its ad-blocking feature offers a more consistent browsing experience location-wise
(see Fig.7) which in turn implies offering a similar workload to the different
devices. We invite the interest reader to leverage WPM’s online service to com-
pare the energy consumption of different browsers.

Table 4 summarizes the scale of this measurement in comparison with related
work. We use Alexa’s top 1,000 list from Nov. 2019 as an input. Out of the
1,000 websites we filtered 49 URLs potentially associated with adult websites—
to avoid downloading and showing inappropriate content at our participat-
ing institutions—and 83 URLs associated with multiple top-level domains,
e.g., google.it and google.fr. In the latter case, we kept the most popu-
lar domain according to Alexa, i.e., mostly the .com domain. Before the full
experiment, we quickly tested the remainder URLs via a simple GET of the
landing page. We find that 57 URLs had problems related with their certificate,
38 URLs timed out (30s) and 58 URLs responded with some error code, 403
(Forbidden) and 503 (Service Unavailable) being the most popular errors. In the
end, we are left with 715 active URLs.

We start by validating the assumption that Brave’s ad-blocking helps in
offering a similar workload to each device, irrespective of its location. Figure9
shows the CDF of the bandwidth consumed across websites when accessed from
the three different device/locations. Overall, the figure confirms our assumption
showing minimal difference between the four CDFs. Note that some variations
are still possible because of, for instance, OS-specific differences, geo-located

BatteryLab: A Collaborative Platform for Power Monitoring 117

LOY — j7puo
— LMX210
0.8 SMJ337A
—— IPHONE?
~ 0.6
S
a
8 0.4
0.2
0.0
1072 1071 10° 10! 102

Bandwidth (MB)

Fig. 9. CDF of bandwidth consumption.

content, or consent forms that tend to be more prevalent in Europe due to the
General Data Protection Regulation (GDPR) [16].

Figure 10 shows the CDF of the energy (J) consumed across websites, mea-
sured on each device. The J7TDUO is by far the most power hungry device con-
suming, on average, 50% more energy than both Android and the i0OS devices—
a trend that has previously been observed during benchmarking (see Fig.6). A
more similar trend is instead shared by the other devices, with most websites
(~80%) consuming between 10 and 20J. The main differences can be observed
in the tail of the distributions (10-20%) where the results start to diverge.

For completeness, we also analyze the CPU utilization during the test. We
focus on Android only since, due to OS restrictions, it was not possible to obtain
the CPU traces. We sample the CPU utilization every 3s during each website
load and report the 25th, 50th, and 75th percentile, respectively. Figure 10 sum-
marizes this analysis as boxplots (across websites) for each percentile and device.
An intuitive way to read this plot is to consider that low CPU values (25th per-
centile) refer to times before and after the CPU load, while the high CPU values
(75th percentile) refer to times when the webpage was loaded. We observe that
LMX210 and SMJ33, despite mounting similar hardware (see Table 2), exhibit
different CPU usages, with SMJ33 spending overall more time at higher CPU
utilization. The reason behind this are manifold, e.g., different OS versions and
vendors. As expected, JTDUO suffers from less CPU pressure thank to its overall
higher resources.

To conclude, BatteryLab allows to measure websites power consumption (and
more) at unprecedented scale, in term of number of websites, devices, and net-
work conditions. This opens up a new set of interesting research questions that
we hope will appeal to the broader research community.

118 M. Varvello et al.

1.0
0.8
~ 0.6
e
[V
5 0.4-
—— J7DUO
0.2 —— LMX210
SMJ337A
0.0 —— IPHONE7
10 20 30 40 50

Energy (J)

Fig.10. CDF of power consumption.

6 Related Work

Several commercial products—such as AWS Device Farm [4], Microsoft App-
Center [26], and Samsung Remote Test Labs [37]—could leverage BatteryLab’s
ideas to match our capabilities in a paid/centralized fashion. The same is true for
startups like GreenSpector [20] and Mobile Enerlytics [27], which offer software-
based battery testing on few devices.

In the research world, MONROE [1] is the only measurement platform shar-
ing some similarities with BatteryLab. This is a platform for experimentation
in operational mobile networks in FEurope. MONROE currently has presence
in 4 countries with 150 nodes, which are ad-hoc hardware configurations [28]
designed for cellular measurements. BatteryLab is an orthogonal measurement
platform to MONROE since it targets commercial devices (Android and iOS)
and fine-grained battery measurements. The latter requires specific instrumen-
tation (bulky power meters) that cannot be easily added to MONROE nodes,
especially the mobile ones. Nevertheless, we are exploring BattOr [38], a portable
power meter, to enhance BatteryLab with mobility support.

Last but not least, BatteryLab offers full access to test devices via a regular
browser. This feature was inspired by [2], where the authors build a platform to
grant access to an Android emulator via the browser to “crowdsource” human
inputs for mobile apps. We leverage the same concept but also further extend it
to actual devices and not emulators only. Further, remote access is just one tool
in BatteryLab’s toolbox and not our main contribution (Fig.11).

BatteryLab: A Collaborative Platform for Power Monitoring 119

80 -
—— J7DUO °
— LMX210 8 ° %

60 SMJ337A 8 8 8

o o 8]
§ 8
: .

CPU Utilization (%)
I
o

N
o

w

25th 50th 75th

Fig. 11. Boxplot with percentiles of CPU usage.

7 Conclusion

This paper has presented BatteryLab, a collaborative platform for high-accuracy
battery measurements where members contribute hardware resources (e.g., some
phones and a power monitor) in exchange for access to the resources contributed
by other platform members. To achieve this, we have built a complete prototyp-
ing suite which enables remote power testing for both Android and iOS devices.
By releasing our code and setup, we invite the community to join BatteryLab,
or at least we offer to eliminate the frustration associated with building “yet-
another” home-grown performance measurement test-bed.

BatteryLab currently counts three vantage points, one in Europe and two in
the US, hosting overall three Android devices and one iPhone 7. We evaluated
BatteryLab with respect to its accuracy of battery readings, system performance,
and platform heterogeneity. We show that BatteryLab’s hardware and software
have, for the most part, no impact on the accuracy of battery readings — when
compared with a “local” setup. This is not true when visual remote access to
the device is required, e.g., for usability testing. However, BatteryLab allows to
“record and replay” usability tests which still offer accurate readings.

Towards the end of the paper, we also demonstrated how to design and run
large scale measurements via BatteryLab. As an example, we have conducted,
to the best of our knowledge, the largest scale measurement study of energy con-
sumption on the Web, encompassing Alexa’s top 1,000 websites measured from
four devices on both Android and iOS. We have further released a web applica-
tion integrated with BatteryLab which allows to measure the power consumption
of a website, in real time.

Acknowledgment. This work was partially supported by the EPSRC Databox and
DADA grants (EP/N028260/1, EP/R03351X/1).

120

M. Varvello et al.

References

® oo w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

. Alay, O, et al.: Experience: an open platform for experimentation with commercial

mobile broadband networks. In: Proceedings of the ACM MobiCom (2017)
Almeida, M., et al.: Chimp: crowdsourcing human inputs for mobile phones. In:
Proceedings of the WWW (2018)

Amazon Inc.: Amazon Mechanical Turk (2022). https://www.mturk.com/
Amazon Inc.: AWS Device Farm (2022). https://aws.amazon.com/device-farm/
Amazon Inc.: Route 53 DNS (2022). https://aws.amazon.com/route53/
Appetize: Run native mobile apps in your browser (2022). https://appetize.io/
Apple Inc.: SharePlay (2021). https://developer.apple.com/shareplay/

Apple Inc.: How to AirPlay video and mirror your device’s screen (2022). https://
support.apple.com/HT204289

BatteryLab: Batterylab tutorial for new members (2022). https://batterylab.dev/
tutorial/blab-tutorial.pdf

BatteryLab: The Web power monitor (2022). https://batterylab.dev/test-website.
html

Bluetooth SIG Inc: Human Interface Device (HID) Profile (2022). https://www.
bluetooth.com/specifications/profiles-overview/

BlueZ Project: BlueZ: Official Linux Bluetooth protocol stack (2022). http://www.
bluez.org

Bui, D.H., Liu, Y., Kim, H., Shin, I., Zhao, F.: Rethinking energy-performance
trade-off in mobile web page loading. In: Proceedings of the ACM MobiCom (2015)
Cao, Y., Nejati, J., Wajahat, M., Balasubramanian, A., Gandhi, A.: Deconstructing
the energy consumption of the mobile page load. In: Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 1, no. 1, pp. 6:1-6:25 (2017)
Chen, X., Ding, N., Jindal, A., Hu, Y.C., Gupta, M., Vannithamby, R.: Smartphone
energy drain in the wild: analysis and implications. In: Proceedings of the ACM
SIGMETRICS (2015)

Data protection: Rules for the protection of personal data inside and outside the
EU (2022). https://ec.europa.eu/info/law/law-topic/data-protection_en

Florian Draschbacher: RPiPlay - An open-source AirPlay mirroring server for the
Raspberry Pi (2022). https://github.com/FD- /RPiPlay

Genymobile: Display and control your Android device (2022). https://github.com/
Genymobile/screpy

Google Inc.: Android Debug Bridge (2022). https://developer.android.com/studio/
command-line/adb

Greenspector: Test in the cloud with real mobile devices (2022). https://
greenspector.com/en/

Hwang, C., et al.: Raven: perception-aware optimization of power consumption for
mobile games. In: Proceedings of the ACM MobiCom (2017)

Jenkins: The leading open source automation server (2022). https://jenkins.io/
Let’s Encrypt: A a free, automated, and open Certificate Authority (2022). https://
letsencrypt.org

Leung, C., Ren, J., Choffnes, D., Wilson, C.: Should you use the app for that?:
comparing the privacy implications of app- and web-based online services. In: Pro-
ceedings of the ACM IMC (2016)

Varvello, M., Katevas, K.: BatteryLab Source Code (2022). https://github.com/
svarvel /batterylab

https://www.mturk.com/
https://aws.amazon.com/device-farm/
https://aws.amazon.com/route53/
https://appetize.io/
https://developer.apple.com/shareplay/
https://support.apple.com/HT204289
https://support.apple.com/HT204289
https://batterylab.dev/tutorial/blab-tutorial.pdf
https://batterylab.dev/tutorial/blab-tutorial.pdf
https://batterylab.dev/test-website.html
https://batterylab.dev/test-website.html
https://www.bluetooth.com/specifications/profiles-overview/
https://www.bluetooth.com/specifications/profiles-overview/
http://www.bluez.org
http://www.bluez.org
https://ec.europa.eu/info/law/law-topic/data-protection_en
https://github.com/FD-/RPiPlay
https://github.com/Genymobile/scrcpy
https://github.com/Genymobile/scrcpy
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://greenspector.com/en/
https://greenspector.com/en/
https://jenkins.io/
https://letsencrypt.org
https://letsencrypt.org
https://github.com/svarvel/batterylab
https://github.com/svarvel/batterylab

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

BatteryLab: A Collaborative Platform for Power Monitoring 121

Microsoft, Visual Studio: App Center is mission control for apps (2022). https://
appcenter.ms/sign-in

Mobile Enerlytics: The Leader in Automated App Testing Innovations to Reduce
Battery Drain (2022). http://mobileenerlytics.com/

MONROE - H2022-ICT-11-2014: Measuring Mobile Broadband Networks in
Europe (2022). https://www.monroe-project.eu/wp-content/uploads/2017/12/
Deliverable-D2.2-Node-Deployment.pdf

Monsoon Solutions Inc.: High voltage power monitor (2022). https://www.msoon.
com

Monsoon Solutions Inc.: Monsoon Power Monitor Python Library (2022). https://
github.com/msoon/PyMonsoon

noVNC: A VNC client JavaScript library as well as an application built on top of
that library (2022). https://novnc.com

Onwuzurike, L., De Cristofaro, E.: Danger is my middle name: experimenting with
SSL vulnerabilities in Android apps. In: WiSec (2015)

ProtonVPN: High-speed Swiss VPN that safeguards your privacy (2022). https://
protonvpn.com/

Raspberry Pi: Raspberry Pi 3 Model B+ (2022). https://www.raspberrypi.org/
products/raspberry-pi-3-model-b-plus/

Ren, J., Rao, A., Lindorfer, M., Legout, A., Choffnes, D.: Recon: revealing and
controlling PII leaks in mobile network traffic. In: MobiSys (2016)

RunThatApp: Enjoy Mobile Apps In The Browser (2022). https://runthatapp.com
Samsung: Remote Test Lab (2022). https://developer.samsung.com/remote-test-
lab

Schulman, A.,; Schmid, T., Dutta, P., Spring, N.: Phone power monitoring with
battor. In: Proceedings of the ACM MobiCom (2011)

TeamViewer GmbH.: TeamViewer (2022). https://www.teamviewer.com/
Thiagarajan, N., Aggarwal, G., Nicoara, A., Boneh, D., Singh, J.P.: Who killed my
battery?: analyzing mobile browser energy consumption. In: Proceedings of WWW
(2012)

TigerVNC: A high-performance, platform-neutral implementation of VNC (Virtual
Network Computing) (2022). https://tigervnc.org

USB Implementers’ Forum: Universal Serial Bus HID Usage Tables (2022). https://
www.usb.org/document-library /hid-usage-tables-112

Mikhailov, V.: uhubctl - USB hub per-port power control (2022). https://github.
com/mvp/uhubctl

Varvello, M., Katevas, K., Plesa, M., Haddadi, H., Livshits, B.: Batterylab, a dis-
tributed power monitoring platform for mobile devices. In: HotNets (2019)
Webpagetest: Test website performance (2022). https://www.webpagetest.org/
Wittenburg, P., Brugman, H., Russel, A., Klassmann, A., Sloetjes, H.: Elan: a
professional framework for multimodality research. In: LREC, vol. 2006 (2006)

https://appcenter.ms/sign-in
https://appcenter.ms/sign-in
http://mobileenerlytics.com/
https://www.monroe-project.eu/wp-content/uploads/2017/12/Deliverable-D2.2-Node-Deployment.pdf
https://www.monroe-project.eu/wp-content/uploads/2017/12/Deliverable-D2.2-Node-Deployment.pdf
https://www.msoon.com
https://www.msoon.com
https://github.com/msoon/PyMonsoon
https://github.com/msoon/PyMonsoon
https://novnc.com
https://protonvpn.com/
https://protonvpn.com/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://runthatapp.com
https://developer.samsung.com/remote-test-lab
https://developer.samsung.com/remote-test-lab
https://www.teamviewer.com/
https://tigervnc.org
https://www.usb.org/document-library/hid-usage-tables-112
https://www.usb.org/document-library/hid-usage-tables-112
https://github.com/mvp/uhubctl
https://github.com/mvp/uhubctl
https://www.webpagetest.org/

	BatteryLab: A Collaborative Platform for Power Monitoring
	1 Introduction
	2 BATTERYLAB Architecture
	2.1 Access Server
	2.2 Vantage Point

	3 Using BatteryLab
	3.1 API Usage
	3.2 Android/iOS Automation Library
	3.3 Action Replay
	3.4 How to Join?

	4 Benchmarking
	4.1 Accuracy
	4.2 System Performance
	4.3 Devices and Locations
	4.4 Usability Testing

	5 The Web Power Monitor
	5.1 Design and Implementation
	5.2 Results

	6 Related Work
	7 Conclusion
	References

