Networking and Internetworking

To do ...

- Networks and distributed systems
- Internet architecture
The state of affairs

- An ever growing Internet
 - ~3.7 billion people (49%)
 - 20 billion devices connected
 - 10 thousands ISPs

- Society’s increased dependency on connectivity
 - More, ever-larger Internet-scale systems
 - FB’s 1.5 billion monthly users, on it 20% of online time

- Tons of money at play
 - Alphabet (Google’s parent company) 1st Q 2017 revenues - $24.7 billions (+22% per year)

Yuhai Tu, How robust is the Internet?, Nature (27 July 2000)
A bit of history – Early days

- ~1960 ARPA sponsored research on networking to let researchers share computers remotely
 - Electronic computers were a scarce resource
 - Renting an IBM System/360 - $5K/month ($35K/month in today’s $)
A bit of history – Early days

- **1969** – First four ARPANET nodes connected
 - UCLA, Stanford Research Institute, UCSB, U. Utah
 - Key design decision – Packet switching
 - Data broken into packets, each routed separately to destination
 - Simpler than circuit switching
A bit of history – Early days

- From 1975 to 1980s
 - Successful ARPANET ~100 nodes
 - Research on packet switching over radio and satellite
 - New LANs connected via gateways
 - TCP/IP conversion in 1983
 - Autonomous Systems and backbone AS for scalability

Nodes are IMPs (Interface Message Processor), the first generation gateways.
A bit of history – NSF takes over

- Late 1980s NSF takes over
 - Focus on expanding the backbone
 - Encourage development of regional networks
 - Three tiers: backbone, regional, enterprise

- Enterprises wanted to connect their networks
 - They were building TCP/IP networks and wanted to connect
 - But NSF charter prohibited them from using NSFNET
 - 1987 first commercial ISP, others follow shortly
A bit of history – To commercial operation

- By 1990 service providers where interconnected
 - Congress lets NSFNET interconnect with commercial networks
 - By 1995, NSFNET was retired
 - No single default backbone anymore
 - Many backbones interconnected through Network Access Points

- ~1995 Web
 - Easier to use Internet
 - Million of non-academic users

- ...
Internet model (traditional and outdated)

- National Backbone Operators
 - Sprint, MCI, AGIS, …
- Regional Access Providers
 - NAP
- Local Access Providers
 - ISP1
 - ISP2
- Customer IP Networks
From building blocks

- Basic blocks

- More hosts?
 - Wires for everyone or routers
 - Routers as switches routing mgs between nodes
Packet switching for communication

- **Packet over circuit switching**
 - Information sent as self-contained packets, with an address
 - Each routed independently to destination
 - Store and forward
 - Simpler than circuit-switched (as in plain old telephone service)

- **If network is overloaded**
 - Short burst: buffer to handle it
 - After that
 - Packet drop
 - Sender adjust rate until load matches resources – congestion control
Internet as a network of networks

- **Internet**
 - A collection of separately, usually competing, managed networks

- **Autonomous system (AS)**
 - Set of network elements under a single organization’s control
 - 1 ISP can operate N ASes; no AS is managed by more than one ISP

- **ASes exchanged traffic at connection points, aka peering or exchange points**
 - Connections formed by establishing a link between “gateway” routers in each AS
Networking protocols

- Using packet switching to provide reliable, efficient communication is complex – protocols and layers
- Between distributed nodes/processes, communication is based on send/receive messages
- Message/packet transmission
 - Message: logical unit of information
 - Data transmission is in packets (transmission unit)
 - Restricted length: sufficient buffer storage, reduce hogging

- For communication to work, parties must agree on several things
 - How does the receiver knows it got the last bit?
 - How long are integers?
 - ...
Networking protocols

- Protocols – agreed-upon rules and formats
 - Sequence of messages to exchange, their formats
 - Implemented by pair of software modules on each end
 - Typically arranged in layers – protocol suite or stack
 - Layering and modularity to handle complexity

- Up and down the stack
 - As a message is pass down, each layer adds a header (trailer)
 - On the receiver side the message is push upward with each layer stripping off and examining their own headers

<table>
<thead>
<tr>
<th>Ethernet header</th>
<th>IP header</th>
<th>TCP header</th>
<th>HTTP header</th>
<th>Application data (webpage)</th>
</tr>
</thead>
</table>

An example on the Web
Protocol stacks

- OSI and Internet
- Open Systems Interconnection model – ISO OSI
 - Not used in practice but good for understanding

![Protocol stacks diagram](image)
Lower-level protocols

- Lower-level protocols, together implementing the basic functions of a computer network
 - Physical – deals with (standardizing) mech and electrical details
 - Just send bits, how long as there are no errors, all is fine …
 - Data link – groups bits into frames, ensure they are correctly received
 - Frames include checksums to check correctness
 - Network – describes how packet are routed from src to dest
 - Most used network protocol – Internet Protocol (IP)

- For many distributed systems, the lowest-level interface is that of the network layer
Internet protocols

- Three higher layers ➔ Just one
- Link layer – physically interface with communication medium
 - Move a packet from one to another location
- Network protocol provides communication host to host
- Transport layer provides inter-process communication
 - Transport address = net add + port
 - Two key protocols
 - TCP – Transmission Control Protocol – connection oriented, reliable stream communication
 - UDP – Universal Datagram protocol – connectionless, unreliable datagram communication
Internet protocols – IP

- Internet Protocol – primary network layer protocol
 - Best effort service – unreliable, no guarantees
 - Connection between a host and network is called interface
 - Each interface has an address; format defined by IP; in IPv4 are 32b expressed as four decimals (165.124.180.20)
 - IP addresses often grouped by their prefixes – initial set of bits that all addresses in the group have in common
 e.g. 165.124.0.0/16 – all addresses with first 16b equal to 165.124

Interface: 165.124.180.20

IHL minimum value is 5, which indicates a length of 5 × 32 bits = 20 bytes

| Octet | Bit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|-------|-----|
| | |
| 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| 4 | 32 | |
| 8 | 64 | |
| 12 | 96 | |
| 16 | 128 | |
| 20 | 160 | |
| 24 | 192 | |
| 28 | 224 | |
| 32 | 256 | |
Key for communication – Routing

- A packet placed in the network must be forward to its destination as specified in packet’s header
- Graph theory problem – find the lowest-cost path between two nodes
- Routers decide outgoing interface for each packet
 - Decision is called routing
 - Placing it in the appropriate outgoing interface – forwarding
 - Set of links used – packet’s path
- For routing, routers must keep information on the configuration and state of the network
 - Update state of links (added, removed, failed router, …)
Internet routing

- Internet routing is hierarchical
 - Two levels intra-AS (intra-domain) and inter-AS
 - Both (1) for scalability (too large, too many routers) and (2) for independence (each AS manage their network independently)

- Intra-AS
 - Link-state routing with OSPF, IS-IS

- Inter-domain routing, a bit more challenging
 - Economic and policy issues
 e.g. “I prefer to send traffic via AS X than Y, but I’ll use Y if it is the only path, and never want to carry traffic between X and Y”
Routing example – RIP

- **RIP** – Routing Information Protocol
- Highly popular, distributed with BSD Unix
- Based on distance vector algorithm (Bellman-Ford)

Router’s routing table
- A record for each destination
- Fields: outgoing link, cost (e.g. hop count)
- A link that is down has an ∞ cost

Routers send table summary periodically (30 sec) or when an update from other routers changes its tab
- If received table shows new or better route, update local one
- *Distance vector router talks only to its neighbors, but tells them everything it has learned*
Routing example

Routing Table for A

<table>
<thead>
<tr>
<th>To</th>
<th>Link</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Local</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Routing Table for D

<table>
<thead>
<tr>
<th>To</th>
<th>Link</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>Local</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Routing Table for B

<table>
<thead>
<tr>
<th>To</th>
<th>Link</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>Local</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Routing Table for C

<table>
<thead>
<tr>
<th>To</th>
<th>Link</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>Local</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Routing Table for E

<table>
<thead>
<tr>
<th>To</th>
<th>Link</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Local</td>
<td>0</td>
</tr>
</tbody>
</table>
Routing in the Internet

- RIP-1, the first routing algorithm used in the Internet
 - A version of the distance-vector algorithm we discussed
 - Slow convergence, potential instability, Floyd & Jacobson’s* observation on 30 sec peak on latency

- Open Shortest Path First (OSPF), a better option
 - Routers maintain a network map, updated when links change
 - Each router monitor the links to which is connected and initiates a flooding protocol upon change
 - Router talks to everyone, but only tells them what it knows for sure (state of directly connected links)

- To compute path to destination
 - Each computes best path from it to every destination – path with the lowest sum of link weights ➔ routing table

*S. Floyd and V. Jacobson, The Synchronization of Periodic Routing Messages, ACM ToN 1994
Intra-domain routing with BGP

- Some highlights
 - BGP advertises complete paths as an AS list
 - Necessary to enable policy decision and detect loops
 - Runs on top of TCP
 - Reliability is covered but need `KEEPALIVE`
- To participate in a BGP session
 - Router opens a connection, sends `OPEN` msg – exchanging tables of all active routers
- BGP `UPDATE`
 - A BGP router will advertise one of several routes to a destination, selected according to its policies
 - It can also send a negative advertisement – withdrawn route
Routing messages needs addresses

- Challenge of Internet protocol design: naming and addressing scheme and routing
- Scheme for assigning addresses has to be
 - Universal – any host can send packets to any other
 - Use address space efficiently – no idea of eventual size
 - 2^{32} or ~4 billion addressable hosts sounds like enough?!?
 - Enable flexible routing but addresses themselves shouldn’t carry much information for routing
- Most of the Internet still on IP version 4 (IPv4)
Domain names

- Hard to remember IPs, some mechanism for using symbolic names (and mapping them)
- Internet naming before 1983
 - Each computer retrieved HOST.TXT from a computer at SRI
 - Legacy – a host file still exist in most modern OS
- DNS by Paul Mockapetris (1983)
 - Names organized into name spaces
 - Name space partitioned organizationally and geographically
 - A distributed system implements the hierarchical name space
 - Each server holds a partial map of the domain name tree bellow their domain
 - Lots of caching!
Transport and higher layers

- **IP model**
 - Messages may be lost, reo-ordered, corrupted

- **Transport protocols**
 - Transfer msgs between clients, packetizing, flow control, …
 - Can you build a reliable, in-order, mostly non-corruption, stream-oriented communication service?

- **According to the OSI, three high-level layers**
 - Session – provides dialog control and synchronization
 - Presentation – resolves differences in formats among sites
 - Application – to meet the specs of a set of standard apps
Internet protocols – TCP

- Basic service – a connection
 - A communication channel between two hosts
- Service is provided to app, process to process
- Both senders and receivers create end points: sockets
- Application read to/write from sockets
 - Sockets ID are #s: IP + 16b number local to the host, port
 - Port numbers [0,1023] are well-known ports, reserved for standard services; [1024,49151] registered ports
 - In Unix, look at /etc/services

<table>
<thead>
<tr>
<th>Port</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>daytime</td>
</tr>
<tr>
<td>22</td>
<td>ssh</td>
</tr>
<tr>
<td>1025</td>
<td>NFS</td>
</tr>
<tr>
<td>1293</td>
<td>IPSec</td>
</tr>
</tbody>
</table>
Internet protocols – TCP

- API provides abstraction of a stream of bytes, hiding
 - Message sizes and destination
 - Lost messages, duplication and ordering
 - Flow control

- General approach to reliability – acknowledgement
 - After sending each segment, source sets timer waiting for ack

- Congestion avoidance
 - TCP will try to match the speed of the processes reading from/writing to the stream
 - Implemented by varying number of un-acknowledged packets the sender allows (window size)
Internet protocols – UDP

- As TCP, process to process communication
- But simpler, a transport-level replica of IP
- UDP datagram is encapsulated inside a IP packet
 - Header includes src & dest port #s, length field and checksum

- UDP adds no additional reliability to IP
 - No guarantee of delivery (no acks or retries)
 - Too large messages are truncated on arrival
 - Messages may be drop or delivered out of order
- No setup costs, no transmission delays above IP
The programmers view

- The TPC/IP stack from a programmers perspective

![Diagram showing TCP/IP stack]

- Application services and application-level protocols based on TCP/IP
 - Web HTTP
 - Email SMTP, POP
 - Netnews NNTP
 - File transfer FTP

HTTPS: HTTP over TLS

Transport Layer Security
Networking issues for distributed systems

- Early networks designed to meet relatively simple requirements from applications

- Recent uses and growth ➔ higher demands on performance, scalability, reliability, …
Networking issues for distributed systems

- **Performance**
 - To access resources on a LAN – 1,000x to access local memory, but faster than local disk
 - Over the Internet – 10^{-100}x >> than a fast local network
 - For Amazon – 100ms extra latency ~1% sale loss*

- **Quality of service**
 - Higher demands from real-time services

http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
Google/Bing Web search delay experiment

- Measure the impact of latency on user behavior
 - A/B testing (randomly assigning users to experiment and control group), server-side delays
- 400ms extra latency, 0.74% fewer searches over time

Impact of Post-header Delays Over Time

E. Shurman, J. Brutlag,
Networking issues for distributed systems

- **Scalability**
 - The Internet was not designed for expected or current scale, but yet must handle it

- **Reliability**
 - Increased dependence → higher reliability

- **Security**
 - Large and more diverse user base + growing dependency → Higher security demands – network is first level of defense

- **Mobility**
 - Addressing and routing schemes developed before mobile devices; not well suited to it

- **Multicasting**
 - Today’s Internet use is mostly for content distribution with a 1-to-m and m-to-m communication pattern
Summary

- Distributed systems use different networks for communication
- Changes in user requirements have placed new demands on the underlying networks
- At the same time, the characteristics of networks (e.g., performance, reliability, scalability) impact the behavior of and affect the design of distributed systems
- Next: some operational issues and network principles