Internet Architecture and Experimentation

To do ...

- Internet architecture
- Principles
- Experimentation
A bit of history – Early days

- ~1960 ARPA sponsored research on networking to let researchers share computers remotely
 - Electronic computers were a scarce resource
 - Renting an IBM System/360 - $5K/month ($35K/month 2016)

- 1969 – First four ARPANET nodes connected
 - UCLA, Stanford Research Institute, UCSB, U. of Utah
 - Key design decision – Packet switching
 - Data broken into packets, each routed separately to destination
 - Simpler than circuit switching
A bit of history – Early days

- From 1975 to 1980s
 - Successful ARPANET ~ 100 nodes
 - ARPA research on packet switching over radio and satellite
 - New LANs connected via gateways
 - TCP/IP conversion in 1983
 - Autonomous Systems and backbone AS for scalability
A bit of history – NSF takes over

- Late 1980s NSF takes over
 - Focus on expanding the backbone
- NSF encourage development of regional networks
 - Three tiers: backbone, regional, enterprise
- Enterprises wanted to connect their networks
 - They were building TCP/IP networks and wanted to connect
 - But NSF charter prohibited them from using NSFNET
 - 1987 first commercial ISP, many follow shortly
A bit of history – To commercial operation

- By 1990, service providers were interconnected
 - Congress lets NSFNET interconnect with commercial networks
 - By 1995, NSFNET was retired
 - No single default backbone anymore
 - Many backbones interconnected through Network Access Points

- ~1995 Web
 - Easier to use Internet
 - Million of non-academic users

- Now …
 - Large ISPs interconnected, regional ISPs, mid-size ISP and eyeballs
Internet model (traditional and outdated)

- National Backbone Operators: Sprint, MCI, AGIS, …
- Regional Access Providers
 - NAP
 - ISP1
 - ISP2
- Local Access Providers
- Customer IP Networks
Updated Internet model

- Global Internet Core
- Regional / Tier 2 Providers
- Customer IP Networks

- Global Transit/ National Backbones
- “Hyper Giants” Large Content, Consumer, Hosting CDN
- IXP
- ISP

- Flatter and much more densely interconnected Internet
- Disintermediation between content and “eyeball” networks
- New commercial models between content, consumer and transit

Labovitz et al., SIGCOMM 2010
Networks and protocols

- Networks’ basic components
 - End-systems, routers and links – media moving packets

- For communication to work, parties must agree on several things – protocol
 - How does the receiver know it got the last bit of a message?
 - How longs are integers?
 - ...

- Each protocol – a set of rules and formats to use
 - Sequence of messages to exchange, format of messages, …
 - Implemented by pair of software modules on each end
 - Typically arranged in layers, to handle complexity – protocol stack
Protocols in communication

- Internet protocols – four layers
 - ISO OSI, 7 layers, not used in practice but good for understanding

- As a message is
 - Pass down, each layer adds a header (sometimes a trailer)
 - On the receiver side the message is push upward with each layer stripping off and examining their own headers
Internet protocols

- **Link layer – Ethernet, WiFi, …**
 - Move packets between locations
 - Physically interface with communication medium

- **Network layer – IP**
 - Move packets between hosts, over sequences of links
 - Provided mostly by routers as they do packet forwarding

- **Transport layer – TCP, UDP**
 - Transfer msgs between clients, including breaking them into packets, controlling flow, re-ordering, etc

- **Application layer – SMTP, HTTP, P2Ps, DNS,**
 - Implements each particular application (email, WWW, …)
Internet protocols – TCP/IP

- IP – Internet Protocol – primary network layer protocol
- A best effort service – no guarantees
- Somebody else does reliability – TCP
- Connection between host & network is called interface
 - Each interface has an address; format defined by IP
 - In IPv4 addresses – 32b expressed as four decimals
 - Assigned in a manner that reflects network organization
- IP addresses often grouped by prefixes – initial bits
 - e.g. 165.124.0.0/16 – addresses with first 16b = 165.124
Internet protocols – TCP/IP

- **TCP** – to ensure data reliability

- **Basic service** – a comm. channel between two hosts
 - Protocol specifies how connections are initiated (three-way handshake), used and released

- **General approach to reliability** – ACKs
 - After sending each segment, source sets a timer waiting for an ACK

- **Congestion avoidance** by varying number of un-ACKs packets the sender allows – window size
 - How the window size is adjusted? Congestion control algo
Internet as a set of ASes

- **Internet**
 - Collection of separately, usually competing, managed networks

- **Autonomous system (AS)**
 - Set of network elements under a single organization’s control
 - 1 ISP can operate N ASes; no AS is managed by >1 ISP

- **ASes exchanged traffic at connection points, aka peering or exchange points**
 - Connections formed by establishing a link between “gateway” routers in each AS
Internet routing

- Packets must be forward to dest as specified in each packet’s header
 - Routing is a graph – find the lowest-cost path between two nodes

- Routers decide outgoing interface for each packet
 - Decision – routing
 - Placing it in the correct outgoing interface – forwarding
 - For routing, routers keep info on network configuration and state

- Internet routing is hierarchical
 - Two levels intra-AS (intra-domain) and inter-AS
 - Both (1) for scalability (too large, too many routers) and (2) for independence (each AS mange their network independently)
Intra-domain routing

- Common intra-AS protocols
 - Distance vector, Bellman-Ford, algorithms – RIP
 - Link state algorithms – OSPF, IS-IS

- Open Shortest Path First (OSPF)
 - Routers maintain a network map, updated when links change
 - Each router monitor the links to which it is connected and initiates a flooding protocol upon change
 - Router talks to everyone, but only tells them what it knows for sure (state of directly connected links)

- To compute path to destination
 - Each computes best path from it to every destination – path with the lowest sum of link weights → routing table
Intra-domain routing

- Inter-domain routing is a bit more challenging
 - Economic and policy issues
 - e.g. “I prefer to send traffic via AS X than Y, but I’ll use Y if it is the only path, and don’t want to carry traffic between X and Y”

- Border Gateway Protocol (in v4) – some highlights
 - Internet is an arbitrary interconnected set of ASes
 - BGP advertises complete paths as an enumerated AS list
 - Necessary to enable policy decision and detect loops
 - Designed to run on top of TCP
 - So no need to retransmit, but need keep-alive messages
 - BGP updates
 - A BGP router will advertise (no obligation) one of several routes to a destination, selected according to its policies
 - It can also send a negative advertisement – withdrawn route
A 5’ brake

There are few forces more powerful than geeks desperately trying to get internet in a new apartment.

Okay, the Pringles cantenna has let us patch in to the WiFi network across the road.

And they have internet?

No, but I think the cable van will hook up their house first.

xkcd
Design principles of the Internet

- To meet functional goals of the Internet, several design decisions have been made – Inferred principles

- Decentralized design and operation
 - A loose interconnection of networks, not really “one” network
 - Connecting a node to the Internet does not require the consent of any global entity
 - Key factor for its rapid growth

- IP hourglass or IP over everything
 - Internet overarching goal – to provide connectivity – IP is key
 - Easy to incorporate both new applications and new communication media
Stateless switching
- Switches are expected to be stateless wrt connections
- When packet arrives, router inspect packet IP’s header and a table to determine how to forward the packet
- Results in very simple routers
- Simplicity of router element is related to …

End-to-end
- Insight – many network functions require cooperation form end-systems for correct and complete operation
 - Don’t try to provide it within the network (except for performance), this will not simplify end-systems
 - E.g. reliable transfer will always need to be checked by end-systems
- Some challenges to end-to-end: untrustworthy world, more demanding apps (use of CDNs), less sophisticated users, …
Design principles and measurements

- Decentralized design and operation
 - Hard to learn the current configuration of the Internet

- IP over everything
 - Makes measuring hard since it hides details of the particular physical medium

- Stateless switching
 - Complicates measurements since routers do not capture or track any aspect of the traffic going by

- End-to-end argument
 - Lack of instrumentation at many points in the network, since it encourages the design of network elements with minimal functionality
Measurement and experimentation

- At every layer
 - Network infrastructure and routing
 - Traffic
 - Applications

- At higher-layers, other concerns
 - Censorship
 - Ethical considerations

- Where can we take measurements?
Where do we measure?

Measurement locations in an ISP

- **ISP X**: Gateway routers route traffic between ISP and other AS
- **ISP Y**: Access routers provide connectivity to customer networks over an access link
- **NAP (Network access point)**: An exchange point of multiple ISPs that can exchange traffic

- **Gateway routers**: Route traffic between ISP and other AS
- **Backbone router**: Central to the ISP's network
- **Access router**: Supplies access to customer networks
- **Access link**: Connection between access routers and customers
- **Peering links**: Connect different ASes for traffic exchange
Measurement in the wide area

- Measurement at a single or few locations are hard to generalize from …

- Measurements across the wide-area
 - Many of the same places, but across a wider area
 - Done by researchers and companies
 - Using distributed platforms for coordinated measurements

- Some measurement platforms and datasets
 - Platforms: NIMI, Planetlab, RIPE Atlas, Archipelago, Dasu, …
 - Datasets: NLANR/CAIDA, Route Views, CRAWDAD …
Wide area measurements – some issues...

- Designing multi-site measurement platforms
- Vantage points locations and layers
 - Placing landmarks ensuring representativeness
 - Networks, applications, clients …
 - Moving up the stack …
- Platform programmability
- Measurement coordination

- Observation and control
 - Observation studies
 - Controlled experiments
 - Natural experiments
More issues ...

- Main problem
 - A decentralized and distributed architecture
 - No support for third-party measurements
- So, measurement efforts
 - have limited visibility (and getting worst)
 - rely on hacks, rarely validated
 - More often that not … what we can measure is not what we want and, worst, what we think we measure
- Key question for any measurement-based research

Do the available measurements, their analysis and modeling efforts support the claims that are made?
Standards? What standards?

- Basis for validation of measurement-based research
 - There are no standards, so we repeat common errors

- A Socratic approach
 - Q1: Are the measurements being used of good enough quality for the purpose of the study? We need metadata for this

 - Q2: Is the level of statistical rigor used in the analysis commensurate with the quality of the measurements?

 - Q3: Have alternative models been considered and what criteria have been used to rule them out?

 - Q4: Does model validation reduce to showing that the proposed model can reproduce certain statistics of the data?
Topology studies as (counter-)examples

- What does the Internet look like? Why do we care?
 - Performance of networks critically dependent on topology
 - Modeling of topology needed to generate test topologies
 - ...

- Internet topology at different levels
 - Router-level reflect physical connectivity between nodes
 - Inferred from tools like traceroute or well known public measurement projects like CAIDA’s Ark
 - AS-level reflects a peering relationship between two providers/clients
 - Inferred from inter-domain routers that run BGP and public projects like Oregon Route Views
Trends in topology modeling

- (Observation ➔ modeling approach)
- Long-range links are expensive
 - Random graph (Waxman ’88)
- Real networks are not random, but have obvious hierarchy
 - Structural models (GT-ITM, Zegura et al. ‘96)
- Internet topologies exhibit power law degree distributions (Faloutsos et al., ‘99)
 - Degree-based models replicate power-law degree sequences
- Physical networks have hard technological (and economic) constraints
 - Optimization-driven models topologies consistent with design tradeoffs of network engineers

Power laws and Internet topology

$R(d) = P(D > d) \times \#\text{nodes}$

- Most nodes have few connections
- A few nodes have lots of connections

- Router-level and AS graphs
- Led to research in degree-based network models
Many complex systems are error tolerant because of the redundantly wired network underneath – but not all

Two types

- Random graphs and small-world, homogenous (E)
 - Nodes connected to each other with some probability
 - Connectivity follows a Poisson and decreases exponentially

- Scale-free networks, in-homogeneous (SF)
 - Nodes are preferentially connected to high connected nodes

*Albert, Jong and Barabasi, Error and attack tolerance of complex networks, Nature, July 2000 (6,300 citations)
Error and attacks on complex networks

- Failures and attacks
 - Failures – randomly take a node, look at diameter
 - E networks - monotonically increases
 - SF networks – unchanged even with 5% of nodes gone
 - Attack – take the high connected nodes first
 - E networks – monotonically increases
 - SF – diameter increases rapidly and the network breaks in pieces

- Analysis done with synthetic networks and

- Two datasets
 - For the Internet same as Faloutsos
 - For WWW, generated from a sample of 350k nodes

- Achilles’ heel: robust to random failure, fragile to specific attack

Albert, Jong and Barabasi, Error and attack tolerance of complex networks, Nature, July 2000
Does the Internet have these features?

- No … focus on degree distribution, ignoring structure
 - Real Internet very structured
 - Evolution of graph is highly constrained

- Answering key questions
 - (Q1) Are the available measurements good enough ….
 • Original goal of data collection “shape of multicast trees”, collected with traceroute … and BGP, which is about routing, not connectivity
 - (Q2) Given the answer to Q1, fitting a particular parameterized distribution is overkill
 - (Q3) There are other models, consistent with the data, with different features
 • Seek a theory for Internet topology that is explanatory, no just descriptive
 - (Q4) Model validation reduced to showing that the proposed model can reproduce certain statistics of the available data
Coming up

- Experimental platforms and experimental design
 - PlanetLab, Dasu, RIPE, mobile platforms …
- Measurement experiments and experimental designs through examples
- Topology, routing, traffic …