A Measurement Study on the Impact of Routing Events on End to End Internet Path Performance

Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, Randy Bush

Presenter’s Qihong Wu (Dauphin)
Overview

- Routing Events vs Path Performance
 - **Routing events** such as *link failures* or *link repairs* happen frequently as indicated by high volumes of routing updates.
 - **Path performance**, such as *loss*, *delay* and *out-of-order packets*.
- The impacts of routing events on path performance remained poorly understood (2005).
Experiment Setting

- Use a multi-homed BGP Beacon
- This Beacon has two tier-1 providers: ISP 1 and ISP 2.
- To emulate the routing events, the Beacon sends a route withdrawal or announcement to one or both providers according to the time schedule:
Emulating Routing Events

• Four types of routing events

<table>
<thead>
<tr>
<th>Beacon events</th>
<th>BGP updates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failover 1</td>
<td>Withdrawing route via ISP1</td>
</tr>
<tr>
<td>Failover 2</td>
<td>Withdrawing route via ISP2</td>
</tr>
<tr>
<td>Recovery 1</td>
<td>Restoring route via ISP1</td>
</tr>
<tr>
<td>Recovery 2</td>
<td>Restoring route via ISP2</td>
</tr>
</tbody>
</table>

• Active Probing:
 • At every hour, every probing source sends a UDP packet stream marked by sequence numbers to the BGP Beacon host at 50 m sec interval.
Terminologies: Network congestion vs Routing Failure

- Network Congestion
- Routing Failures
 - Temporary route loss: identified by correlating loss bursts with ICMP network unreachable message.
 - Forwarding loop: can be identified if TTL value exceeds the maximum value.
 - Since ICMP packets can be lost, the number of loss bursts due to routing failures may be underestimated.
Failover Events: Data Plane Performance

- The experiment divide the time period into three intervals:
 - Before path change;
 - During path change;
 - After path change.

- The result shows:
 - During path changes packets suffer most
 - Failure events have the most impact on loss burst length.
Root Causes of Loss Bursts

- More than half of failure events can be verified having routing failure (routing dynamic).
- The loss bursts that are verified as caused by routing failure last longer than those unverified loss bursts.
- The loss caused by forwarding loops last longer than those caused by loop-free routing failures.
Explanation

- Two gaps both can be correlated to ICMP -> routing failure
- Explanation:
 - RR1 in ISP1 cannot reach Beacon at the first gap (04:00:01);
 - After RR1 found alternative path, this cannot announce to RR4 in ISP3 because of “no-valley” routing policy, result in RR3 lose route at the second gap (04:00:19).
Experiment focus on multiple loss bursts

In over 75% of the cases, a host experiences fewer than two loss bursts.

Among the first two loss bursts, around 60% of the first loss bursts can be verified caused by routing failures, while 40% for the second bursts.
Data Plane Performance

- More packets dropped during after path change, which is most likely due to congestion.
- Recovery events have impacts on packet round-trip delay and the degree of reordering, though the impacts are smaller compared to failure events.
- The loss burst length are not different from that for failover events.
Further Analysis for Recovery Events

- Fewer packet loss verified to be caused by routing failure
- Latency:
 Unverified loss bursts during recovery events
 < Routing failure verified loss bursts during recovery events
 < Routing failure verified loss bursts during previous failure events
- Forwarding loops are also quite common during recovery events.
How Routing Failures Occur

- First, R3 receives the new path and waits for the expiration of MRAI timer to send new path to R1 and R2.
- The new path send to R2, before to R1.
- R2 switches to new route, but cannot forward new route to other iBGP.
- R2 send a withdrawal message to R1 to poison its previous route, result in R1 loss burst.
The Last Regards

- The raw experimental result is quite straight and intuitive:
 - Routing events influence path performance
 - Routing changing causes longer latency than forward loops do.
- The new findings:
 - Recovery events indeed affects path performance, though limited
 - Multiple loss bursts can occur at different ASes.
- But through topology explanation:
 - Common iBGP configuration and MRAI timer values play a major role in causing packet loss
 - Extending BGP to accommodate routing redundancy may eliminate majority of end-to-end path failures caused by routing events