1. INTRODUCTION

Smartdevices are becoming the primary or only Internet point of access for an ever larger fraction of the population. Nearly a quarter of current web traffic is mobile, and recent industry studies have estimated a fourfold increase on global mobile data traffic by 2018, mainly driven by the content demands and growing number of smart phones and tablets [2]. The most recent CISCO VNI report estimates that by 2018, the majority of North America devices and connections will have 4G capability and, while 4G will be 15% of world-wide connections then, these connections will be responsible for 51% of traffic.

Cellular networks pose a challenge to content delivery networks (CDNs) given their opaque network structure, limited number of ingress points, and obfuscated DNS infrastructure. Previously, large, cellular radio latencies meant CDN replica selection had little impact on the total end-to-end latency. However, the advancement of 4G networks such as LTE has lowered mobile device access latency to make it comparable with many existing broadband services, making the choice of content replica server a significant contributor to end-to-end performance.

In general, but particularly in cellular networks, CDNs have limited signals for locating clients. Mobile IPs have been shown to be dynamic for mobile end hosts [1], and external entities such as CDNs are prevented from probing their mobile clients or their infrastructure by NAT and firewall policies implemented by cellular operators.

In this poster, we present preliminary work looking at the impact of replica selection in next generation cellular networks. Using a collection of over 250 mobile end-hosts over a two-month period, we explore CDN replica selection in cellular networks measuring the latency to content replicas for a selection of popular mobile websites. We find that clients in next generation radio technologies can see up to 400% differences in latency to selected replicas. In an extreme case, we observed replica server for clients in Sprint.

We observe a wide range of performance diversity of content replicas seen by each client. We measured the HTTP time-to-first-byte to replicas for a collection of websites. By aggregating all replica servers seen by clients in our experiments, and taking the average client latency to each replica, we found the lowest latency replica for each website. All other replicas are shown as a percentage difference between their latency and the “best” seen replica. The cumulative distribution of these ratios is shown in Fig. 2.

While the degree of replica differential performance varies per operator, we consistently found replica latency increases ranging from 50% to 100% in all networks. In an extreme case, we observed replicas with 400% increased latency over the closest observed replica server for clients in Sprint.
3. CELLULAR DNS BEHAVIOR

Many of the largest CDNs rely on DNS for client location/replica selection in cellular networks. Our results show that cellular DNS makes a poor indicator for client location, due to the opaqueness of cellular resolvers to external services, and the inconsistency between mobile clients and their visible LDNS resolvers. CDNs typically aggregate client resolvers behind traceroute divergence points and map clients based on measurements to these points. Unlike the majority of DNS resolvers, cellular DNS resolvers are unable to be probed and measured by CDNs. The inability to traceroute the cellular DNS resolvers invalidates this approach.

We discovered inconsistency between mobile clients and their cellular DNS resolvers over time. In other words, a CDN will see the same client originating from different locations, and depending on the extent of DNS load balancing, users can see high variability in the quality and performance of selected content replicas.

The movement of a client’s visible DNS resolver is shown in Fig. 3 for users in T-Mobile and AT&T. The figure plots the enumerated LDNS resolvers observed by mobile clients. The blue marks on the bottom plot represent individual IP addresses seen and the red marks on the top represent resolver /24 prefixes observed by the mobile client over time. Surprisingly, many of the different DNS resolvers observed exist in separate /24 prefixes. This shuffling between resolvers in different prefixes is important because we found several CDNs mapping replica servers to resolver /24 prefixes.

4. CELL NETWORKS HELP

Our work reveals several hurdles for cellular content delivery. Without the cooperation of cellular operators, CDNs have limited options for locating clients within cellular networks. Previous work has found the temporal inconsistency with cellular client IP addresses [1], and the previous section outlined our findings showing the inconsistency between mobile clients and their visible resolver. Additionally, our findings uncovered inconsistency in anycast addresses, limiting the appeal of anycast CDN services.

5. REFERENCES