Expressive Privacy Control with Pseudonyms

Seungyop Han, Vincent Liu, Qifan Pu, Simon Peter, Thomas Anderson, Arvind Krishnamurthy, David Wetherall

University of Washington
Expressive Privacy Control with Pseudonyms

Seungyop Han, Vincent Liu, Qifan Pu, Simon Peter, Thomas Anderson, Arvind Krishnamurthy, David Wetherall

University of Washington

slides based on Seungyop Han's SIGCOMM presentation
Tracking

Article on Politics

P1

news.com

P2

facebook.com

P3

facebook.com
Tracking is Pervasive
Tracking is Bad for Privacy

- Trackers can correlate activities the user might not want associated: i.e., business and sensitive personal information

User1:
UW, CSE, Route to [Alice’s home]
User2:
SIGCOMM, Hacking, Depression
Tracking is also Good?

- Banking websites track users to prevent fraud
- Targeted advertisements are better for users
- Economic engine of much of the internet
Tracking is opaque

- The user has no control over how they are tracked
What do Trackers track?

• **IP Address**

• **Application information**
 ○ Cookies
 ○ HTML5 LocalStorage

• **DNS**

• **System Information**
Current Solutions

• Application Layer
 ◦ Block Third-party Cookies
 ◦ DoNotTrack header

Can’t handle lower-level information: IP address
Current Solutions

- Network Layer
 - Proxies
 - Tor
 - NAT

Inflexible and some (Tor) are slow. Break applications that rely on IP address for identification
Pseudonyms: power to the user!

- Unlinkable identities that each look like a single user
- Custom policies for how and when to use different pseudonyms
- Necessitates changes at the network and application layer
- (ab)use the massive address space of IPv6 to assign an IP address per pseudonym
Traffic without Pseudonyms

Alice

Tracker

Bob

User1:
UW, CSE, Route to [Alice’s home]
User2:
SIGCOMM, Hacking, Depression
Traffic with Pseudonyms

Alice

Tracker

Bob

User 1: UW, CSE
User 2: Route to [Alice’s home]
User 3: SIGCOMM, Hacking
User 4: Depression
Contributions

• Pseudonym concept and design

• Case study of one application using pseudonym concept: Web Browser

• Chrome plugin with web gateway as proof of concept
"prevent remote services, with which a user interacts, from linking the user’s activities except in ways that the user intends"

• Adversaries want to correlate behavior to link pseudonyms belonging to the same user

• Adversaries can collude with endhosts in the pseudonym system

• Users have to trust first-hop ISPs (or send packets through Tor to someone they trust)
Pseudonyms

• To a user: a collection of activities the user wants linked together

• To a tracker: a single machine
Example Policies

Sort by Identity

Users of the same computer want different identities or want to separate different interests/activities

Users create a different pseudonym for each activity
Example Policies

Banking Websites

Track users to combat fraud, double check when user logs in via a new machine

User creates a pseudonym specifically for banking activities
Example Policies

Separate Sessions

Users don’t want requests linked together (e.g., bittorrent downloads)

User creates a pseudonym for each use of the system

For BitTorrent, need browser and BitTorrent client support
Example Policies

Block Third-Party Tracking

Use one identity for requests to a website, but then use random pseudonyms for third party requests
Design

• What needs to be done at each layer?

• What network/OS support is necessary for multiple IPs/machine?

• How are packets sorted into pseudonyms and what are useful policies?
Application Layer

- simple API: allocpseudonym and freepseudonym
- Pseudonym state is application-specific
- Applications decide when to use which pseudonyms
Example: Pseudonymous Web Browser

- Separate cookies, Flash objects, local storage, DNS caches,... for each pseudonym
- Provide default as well as scriptable policies
Browser Policies

Default: one pseudonym
Browser Policies

Per-request: new pseudonym for each request
Browser Policies

Per-1st-Party: new pseudonym for each domain
How to allocate Pseudonyms?

• Can’t just give each user a bunch of IP addresses if they can just be linked together

• Need a larger pool of IP addresses to choose from and have them randomly assigned (first-hop ISP)
Network Layer Design Goals

- Proper Mixing: pseudonym IPs appear random
- Efficient Routing
- Easy revocation: pseudonym -> IP mapping can be changed efficiently
Network Layer

- Remote Server
- Internet
- Large Network
- DHCP Server
- Large Network
- Small Network
-

Diagram showing network architecture with connections to Internet, DHCP server, and various network segments.
Network Layer

• IPv6 address space is HUGE: 2^{128}

• Small networks get blocks with a /64 prefix, still 2^{64} addresses

• Separate remaining bits into subnet, host and pseudonym ids

• Routers and DHCP servers within the network maintain a secret key for encrypting/decrypting these 3
Network Layer

Base

<table>
<thead>
<tr>
<th>Network Prefix</th>
<th>Subnet ID</th>
<th>Host ID</th>
<th>Pseudonym ID</th>
</tr>
</thead>
</table>

64bit <-> 64bit

Encrypted

<table>
<thead>
<tr>
<th>Network Prefix</th>
<th>S</th>
<th>Encrypted ID</th>
</tr>
</thead>
</table>

Signature bit indicating current key

Decrypted

Encrypt

Decrypt
Proper Mixing

• DHCP allocates new pseudonyms
• Machine broadcasts DHCP request with MAC address and number of desired ids
• Server uses the secret key to encrypt the randomly generated addresses
• Random pseudonym ids create randomly distributed IP addresses after encryption
Efficient Routing

• Reuses network prefix portion of IP address to keep inter-domain routing the same

• Routers decrypt the IP address and then route normally within the ISP’s network (don’t overwrite the packets)

• No increase in router state!
Easy Revocation

- Routers and DHCP servers keep 2 secret keys at a time
- Only use pseudonyms with a particular signature bit for each key
- New key phases out the old one gradually
Deployability

- Requires changes to routers for intra-domain routing
- Requires changes to DHCP servers
Deployability

- Ease adoption by deploying translator routers at the edge to change IPs on the fly
- Use tunneling and proxies to deploy on networks without IPv6
Approximate Implementation

Authors created chrome extension to allow for usage with IPv4 and no ISP support
Pseudonym-specific state

Pseudonyms have their own

- IP Address
- DNS cache
- Cookies/local storage

Leave browser fingerprinting for future work
IPv4

- Only 14.6% of ASes run IPv6
- Tunnel IPv6 through IPv4
- Users have a private IPv4 address used to communicate with gateway
- Users have many public IPv6 pseudonym addresses assigned by the gateway, mimicking the role of the subnet
Evaluation

• What’s the overhead?
• How expressive is the model
• How many pseudonyms do you need to maintain privacy?
Performance

End-to-end

Top 100 Alexa websites supporting IPv6

- 25% of Alexa Top 100 support IPv6
- 100th IPv6 supporting is ranked 869th overall
Performance

OS

• Mostly negligible slowdown from using hundreds of IP addresses

• Large slowdowns are fixable with better implementation
Performance

Router

• Decryption shown in microbenchmarks to be capable of line-speed.
Expressiveness

Authors implemented various policies

• Per tab
• Per session
• Per 1st-party
• Per page
• 3rd-party blocking
• Per request
• New pseudonym every 10 minutes (Tor)
Privacy Control

• Use HTTP request traces for 3 days of 8 users

• 406 unique domains, 281 (69.2%) containing third-party trackers
Privacy Control

Measure privacy by collusion graphs to see which activities are seen by which parties

Privacy Preservation over Policies
Privacy Control

• Need <10 bits for large increase in privacy
• Different browsing patterns benefit from different policies
Conclusion

• Pseudonyms can give us the benefits of trackers without throwing away privacy
• Pseudonyms enable new application layer possibilities
• IPv6’s massive address space enables efficient implementation