Today
- Welcome
- Class organization and guidance
- Some advice
What is this about?

- Distributed systems
 A set of independent, interconnected processors that communicate and coordinate their action by exchanging messages

- Our goal – discuss cool ideas and projects that push distributed systems to “uncomfortable places”
 - How uncomfortable?
What topics will we cover?

- In the air
- Underwater
- In downtown
- In rural Africa
- …
A higher-level goal

- Learn research by doing
 - Reading research papers
 - Discussing them in depth
 - Presenting research ideas (yours and others)
 - Picking a research project and executing it
 - Writing a research paper

© Original Artist
Reproduction rights obtainable from
www.CartoonStock.com
Communication channels

- Website for most things
 http://aqualab.cs.northwestern.edu/class/236-eecs-395-s14

- Piazza for class discussion
 https://piazza.com/northwestern/spring2014/eecs395/home

- Email for what you shouldn’t post (“DSCE: …”)
Class structure

• Class meetings
 – Read research papers
 – Present research ideas
 – Learn about ongoing work

• Taking part of a mini-conference
 – You as the Program Committee
 – Our reading list as the submissions
 – Your task – review 3-4 papers, discuss them in a PC meeting

• Project
 – Come up with fresh idea, we can brainstorm together
 – Research, build, test, …
 – Write a report/paper on your project
 – Present it to the class
Grading

- **No exams**
- **Class (60%)**
 - Participation 15%
 - Paper review and PC meeting 25%
 - Presentation and discussion leading 20%
- **Project (40%)**
 - Proposal 5%
 - Midterm report and presentation 10%
 - Final report and presentation 25%
- **Tons of extra points!**
Reading papers

- Why reading?
 - Get an overview, to present the paper, writing a review, ...

- Deciding what to read
 - What did they do? Title & abstract should tell you that

- Reading for breadth
 - Develop a framework of the paper and assess authors’ credibility by skimming; if you want to know how they did it ...
Reading papers

- ...
- Reading in depth
 - Challenge their argument – examine their assumptions, methods, experimental framework, statistics, conclusions
 - Can you apply their research to your work?
- Take notes
 - Highlight major points, note definitions, construct an example, ...

- For the class
 - 24hr before I will post a question
 - Answers need to be long enough to demonstrate that you understand the paper
A mini-conference

- Practice reviewing papers for conference/journal
- How does it work?
 - State your preferences
 - Papers assignment based on them
 - Each paper will receive 3 reviews, you will write 3
 - Discuss papers in a two-part PC meeting
 - Reviews due before Sunday of the week when the paper was presented! So I can give you early feedback working toward

- Extra point opportunity! 10%
 - Best reviewer – judge by me
A mini-conference

• To do next – read the linked papers on reviewing
 – Mark Allman’s Thoughts on reviewing
 – Timothy Roscoe’s Writing reviews for systems conferences
 – Register with HotCRP (find it in the course website)
Review form

- Overall merit
- Reviewer confidence
- Paper summary
- Paper strength
- Paper weaknesses
- Comments for authors
- Comments for PC
Giving a good research talk ...

- Not easy – some guidelines
- The talk is not an in-depth treatment of the work
 - Who is your primary audience? *Easy to do in our case*
 - If someone remembers one thing from the talk, what would you like it to be?

- Think of what motivated you (the authors)
 - Use examples to motivate the work and approach
 - Use examples to illustrate your points

- Saying enough without saying too much
 - Enough to convey your ideas, not too much to overwhelm your audience – follow a non-uniform approach
Giving a good research talk

- Don’t put too much on the slide
 - Prune multiple times
 - People can only take very limited info per slide: 5+/-2 things
 - Just one figure per slide!
 - Use the slide header when possible
- Consider dropping the typical “overview/roadmap”
- Careful with use of animation
- Mind the time!
- Number your slides

- Extra point opportunity! 10%
 - Best presentation – judge by the group
 - We will keep the best-so-far in the website
Project

- One single project – a critical piece – 40%
- Your goal
 - Design, construct, evaluate an interesting distributed system
- Final report and in-class presentation by the team
- Teams of 2+ people; based on topics you will be assigned a project leader (me or somebody else)
Schedule

- Form a group – March 31 – April 6
- Project meeting with me – April 8 & 10 (Tue. & Thu.)
- Project initial presentation – April 14 & 16
- Midterm presentation and report – April 28 & May 5
- Project meeting with me – May 22
- Final presentation – May 28 & June 2
- Final report due – Finals week (June 9-13)
 - HotNets format: <= 6 2-col. pages, including all figures and references, 11-point fonts, standard spacing, and 1-inch margins
A common approach

- Pick a topic/area
- Learn about the area, typically by reading papers
- Come up with a new idea
 - A solution to a problem you notice
 - An open research question
- Execute your idea
 - Model, implement, evaluate, …
- Share what you have learned by writing a paper and presenting it somewhere
Light project presentations

- Initial presentation – 4 slides
 - Project name and team members
 - Research contributions of the project; list of new/interesting concepts to explore
 - Why do we care if you are successful?
 - Project milestones and schedule for the rest of the quarter

- …
Light project presentations

- Midterm presentation and report – 4 slides
 - Project name and team members
 - Revised statement of project goals; list of new/interesting concepts to explore
 - List of issues addressed and pending
 - Updated project milestones, highlighting accomplishments to date, and schedule for the rest of the quarter

- Final presentation – ~15’ based on final report

- Extra point opportunity! 10%
 - Best project – judge by everyone after final presentation
Final report

- Abstract
 - What did you do, why is important & what are your high-level results?

- Problem statement
 - What is the problem you tried to solve?

- Prior work
 - How has the problem being dealt with before? Why was that not enough?

...
Final report

- Research approach
 - Approach to solving the problem? What did you design, built? What was your evaluation methodology?

- Results
 - How did you evaluate the work? What were your figures of merit?

- Lessons learned and future work
 - What would you have done differently? What’s left for future work?

- Summary and conclusions
Next time/TODO

- Register with HotCRP and enter your preferences
- Form a group if you haven’t already!
- Start thinking of project topics or talk to me
- Read *Now or Later?* – to be presented by Fabián
 - I will post a question shortly
- Review the course website