Today
- Overlays networks
- P2P evolution
- Pastry as a routing overlay example
Network virtualization and overlays

- Different applications with a range of demands/needs
 - network virtualization
 - To provide a service tailored to a class of applications
 - DHTs, P2P file sharing, CDNs
 - To support more efficient operation in a given network environment
 - Wireless ad-hoc networks, DTNs
 - To add extra features such as multicast or secure communication
 - Multicast (overlay multicast), resilience, security

- And the costs ...
 - Additional level of indirection
 - Opacity of the underlying network
 - Complexity of the network services
Skype – an example overlay

- **Peer-to-peer VoIP**
 - Developed by Kazaa in 2003, acquired by Microsoft in 2011 for US$ 8.5 billions
 - 34% of the call market share, 50 million concurrent online users in January 2013

- **Notes on design**
 - Super-peer structure (super-peer selected based on availability, reachability, bandwidth, etc)
 - Users login through a well-known server, but connect to the network and others through super-peers
 - TCP for control, TCP or UDP for voice

Baset & Schulzrinne’s studies
Peer-to-peer

- A distributed system architecture
 - No centralized control
 - Nodes are symmetric in function
 - Larger number of unreliable nodes

- Promise of P2P
 - Reliability – no central point of failure
 - Multiple replicas
 - Geographic distribution
 - High capacity through parallelism
 - Automatic configuration
 - ...

- Placing and finding resources on an overlay
Three generations of P2P

- Enable by technology improvements in computing and networking
 - Many predecessors (DNS, Netnews/Usenet, Grapevine, …)

- Unstructured and centralized
 - Napster

- Unstructured and decentralized
 - Gnutella, Kazaa, …
 - Peers connect with other random peers
 - Semi-structured models (superpeers) for scalability

- Structured and decentralized
 - E.g. DHTs like Chord, Tapestry, Pastry, Kademlia, and CAN
Napster’s legacy

- Grassroots service for sharing digital music files
- Cluster of central servers
 - Maintain an index of files being shared
 - Monitor state of each peer in the system
 - Maintains metadata for peers (e.g. connection bandwidth)
 - Cooperate to process queries, return a list of matching files and locations
- Peers
 - Maintains a connection to one of the central servers
 - Issue query to servers, and server request from peers
Gnutella – Unstructured and decentralized

- All peers are equal and can connect to anyone (V0.4) or leaf-peers can only connect to super-peer (V0.6)
- No constraints on placement of data objects
- Flooding or random walk for search

\[y = 4338.8x^{1.0607}, \quad R^2 = 0.9912 \]

Gnutella: Active probing, trying to initiate a handshake, over 7 days & 600K sessions

Common DHT approach

- Assign random (128/160-bit) ID to each node and object
- Define a metric topology on the 128/160-bit numbers, i.e., the space of keys and node IDs
- Each node keeps contact info to $O(\log n)$
- A simple interface – put(key, value), get(key) \rightarrow value
 - A lookup algorithm which finds the node whose ID is closest to a given key
 - Need a metric that identify closest node uniquely
 - Store/retrieve a <key, value> pair at/from that node
- Supports a wide range of applications – no meaning assigned to keys
Pastry as an example

- Routing overlay, a substrate for PAST (distributed file system), SCRIBE (distributed pub/sub), SQUIRRELL (cooperative web caching), SplitStream …
- Hash table's key-space is considered circular (~Chord); node IDs are 128-bit unsigned
- Routing overlay is formed on top of the hash table by each peer discovering and exchanging state information consisting of
 - Leaf nodes – $L/2$ closest peers by ID in each direction around the circle
 - Neighborhood list – M closest peers based on routing metric
 - Routing table – one entry per address block assigned to it
Pastry routing table

- To form the address blocks, divide 128-bit key into digits, each digit b bits long, yielding a numbering system with base 2^b
 - So addresses are partitioned into distinct levels from the viewpoint of the client

Routing table for node 65a1fc ($b=4$, so $2^b = 16$)
Routing in Pastry

- Whenever a peer receives a msg with key D to route
- If D within the leaf set or is the current node
 - Forward to L_i with GUID closest to D or to current node
- Else use the routing table
 - Find address of a node which shares a longer prefix (at least one digit or b bits) with destination address than the peer itself
 - If this set is not empty
 - Forward to that node
 - Else, if the peer does not have any contacts with a longer prefix or the contact has died
 - Pick a peer from its contact list with same length prefix whose node ID is numerically closer to destination and forward it there
Pastry routing

- Properties
 - $\log_{16} N$ steps
 - $O(\log N)$ size routing table / node

Prefix routing

Route(d46a1c)

65a1fc

d13da3

d4213f

d46a1c

d467c4

d471f1

d462ba
Finding popular objects

- Need exact-match queries to find objects for download
 - Search 20k popular objects from Gnutella in Gnutella & Kademlia (Overnet)

Curves are normalized by number of successful queries (97.4% in Kademlia and 53.2% in Gnutella)

Gnutella: 50% finished in 47s
Kademlia: 50% finished in 17s!

Gnutella is much better for most popular objects

Qiao and Bustamante, Structured and Unstructured Overlays Under the Microscope - A Measurement-based View of Two P2P Systems That People Use, In Proc. of USENIX ATC 2006
Summary

- New applications with new demands on the underlying network
- Architectural changes are, at best, difficult
- Overlays both as a path to deployment and an experimental testbed
 - Deploying narrow fixes?
 - No demands on underlying network (to ensure deployment)
- From grassroots efforts and research labs to products
 - But much research to be done
- Future Internet and overlays?