Inside Dropbox: Understanding Personal Cloud Storage Services

Drago, Mellia, Munafo, Sperotto, Sadre, Pras
University of Twente
What they’ve done

• First to study Dropbox
• Characterize the workload typical users have
• Find bottlenecks
How Dropbox works

• Two main types of Dropbox servers:
 ▫ Control
 ▫ Data storage
• Dropbox owns the control servers
• Outsources the data storage servers to Amazon.
Dropbox communication

Figure 1: An example of the Dropbox protocol.
Communication specifics

- Client interacts with control to get working orders
- Routes to storage to store directly
- ACK-ing is sequential in storage
Control Servers

• 3 types:
 ▫ Notification
 ▫ Meta-data administration
 ▫ System-log servers

• They talk about 1 and 2, but not really 3...
Control Servers

- Dropbox client keeps open continuous TCP connection
- Connects to notification server about changes being pushed to other machines
- These connections not encrypted.
Metadata servers

- Communicate with several short TLS connections
- Done to handle batches sent and received.
- Used mainly during file transfer.
Data servers

- Over 500 distinct domain names point to Amazon servers
- Two basic types of commands: store and retrieve
- In new version of Dropbox, there is store_batch and retrieve_batch
Testing protocols

• Basic Idea:
 ▫ Analyze traffic from two university campuses
 ▫ Analyze traffic from two different residential networks
 ▫ Devise a methodology for monitoring cloud storage traffic
How they monitored traffic

- Most client communications are encrypted with TLS
- Dropbox client was told to use a Squid server they set up
- Module SSL-bump terminated SSL connections and saved decrypted traffic flows.
- Then they mirrored the required Dropbox certificates to prevent server ending communication
Tstat and key data points

- **Tstat**
 - Exposes client and server IPs
 - Amount of exchanged data
 - Retransmitted segments
 - RTT
 - Number of TCP segments that had PSH flag
- Used Tstat at 3 vantage points and collected data for 42 straight days
College 1 and College 2

- College 1 is a wired main campus network
- Most of the machines are used for either research or administration (akin to Tlab or Wilk machines)
- College 2 monitors the peripheral nodes of a college network
- Dorms, Norris, etc.
Home 1

(a) IP addresses
Home 1 for Data Volume

(b) Data volume
Home 1 implications

- Dropbox is more popular and more widely used
- Makes sense, although they (rightly) point out that Google Drive didn’t really exist in its final form
- How useful is this data?
Youtube and Dropbox comparisons

Figure 3: YouTube and Dropbox in Campus 2.
How Dropbox manages data

Figure 4: Traffic share of Dropbox servers.
YouTube and Dropbox

• Exists to show how popular Dropbox is compared to YouTube on college campuses.
• Also used to show weekly network traffic
Differences between networks

Figure 5: Number of contacted storage servers.
Network differentiation

- Implication: Better network, better performance
- Other implication: Networks closer to Dropbox servers operate really fast.
Differences between Storage and Control
Storage Throughput (upload)
Storage Throughput (download)
Their takeaways

• Dropbox has more traffic because Google Drive and SkyDrive weren’t launched.
• Dropbox performs better when it has storage servers closer to its clients
• Dropbox’s overall throughput is pretty low
• Most of their recommendations were fixed with the update
Dropbox User Profiles

- Different people use Dropbox for different things
- Home users tend to download more
- 40% of college users have at least 5 shared folders
Discussion

• A lot of their results seem kind of basic
• They say that one of the big things they’re doing is devising a method for monitoring cloud storage traffic, and they barely mention it.
• They say it’s an analysis, but their data still ends up being more of a comparison
Discussion, cont’d

- Are their recommendations any different than what you would tell any other company?
- Is the YouTube comparison at all relevant or necessary?
- If Dropbox is global, why is improving their network topology on a local scale important (as opposed to global optimization)?
- Why don’t they talk about their methodology???