Today
- Coordination and agreement in group communication
- Consensus
Events and process states

- A distributed system – a collection P of N single-threaded processes w/o shared memory
 - Each process \(p_i \) has a state \(s_i \)
 - Each executes a series of actions – send, receive, transform state

- Events and clocks
 - Event – the execution of a single action
 - All events in a process can be placed in a total ordering \(\rightarrow_i \)
 - \(e \rightarrow_i e' \) iff \(e \) is an event that occurs after \(e' \) in \(p_i \)
 - History of a process \(p_i \): \(\text{history}(p_i) = h_i = < e_i^0, e_i^1, e_i^2, ... > \)
 - Computers have their own hardware-based clock, \(C_i \), which can be used to assign timestamps to events to \(h_i \)
 - \(C_i(t) = \alpha H_i(t) + \beta \) here \(H_i \) is the hardware clock of value at physical time \(t \)
Physical clocks

- Agreeing on time in distributed systems is not trivial
- Until the invention of the atomic clock, time was measured astronomically
- Universal Coordinated Time (UTC):
 - Based on # of transitions/sec of cesium 133 (Cs133) atom
 - Currently, real time is as avg of ~50 cesium-clocks
 - A periodic leap second compensates for days getting longer
- UTC is broadcast through short wave radio & satellite; satellites can give an accuracy of about ±0.5 ms
- We want to distribute this to a bunch of machines
 - Each runs its own timer, keeping a clock $C_p(t)$ (t being UTC)
 - Ideally we want $C_p(t) = t$ for all processes, i.e. $dC/dt = 1$
Physical clocks

- However, $1 - r \leq \frac{dC}{dt} \leq 1 + r$
 - Frequency of clock at time $t - C'_p(t)$
 - Skew of clock, extent to which its frequency differs from that of a perfect clock $- C'_p(t) - 1$
 - Offset relative to a specific time t $C_p(t) - t$
 - r is the maximum drift rate of a clock (given by its manufacturer)

- Goal: Never let two clocks in any system differ by more than d time units \Rightarrow synchronize at least every $\frac{d}{2r}$ seconds
Clock synchronization

- Two modes – internal and external synchronization
 - Internal – The clocks in the set must agree within a bound d
 - External – The clocks must be accurate respect to a source of UTC time within a bound d
 - Setting the time back is never allowed \Rightarrow smooth adjustments

- Internal synchronization
 - Pushing server – Berkeley algorithm
 - Let the time server scan all machines periodically, calculate an avg (accounting for rtt), and inform each machine how to adjust its time

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2:50</td>
<td>3:00</td>
<td>3:25</td>
</tr>
<tr>
<td>3:00</td>
<td>3:25</td>
<td>+15</td>
</tr>
<tr>
<td>+5</td>
<td>+15</td>
<td>-20</td>
</tr>
</tbody>
</table>
```
Clock synchronization

- **External synchronization**
 - Cristian’s method - pulling server
 - Every machine asks a time server for the accurate time at least once every $d/(2r)$ seconds
 - You need an accurate measure of round trip delay, including interrupt handling and processing incoming messages

- **Network Time Protocol**
 - External synchronization for the Internet
 - A number of servers, in a hierarchy with
 - Primary servers directly connected to time sources
 - Secondary servers synchronized with others servers
 - All organized in strata – lower levels, higher confidence
Logical clocks

- We typically assume clock synchronization is related to real time, not necessary
- We have seen (Berkeley algorithm) clocks can agree on a current time without this having to be the real time
- Actually,
 - Many times all that matters is that two nodes agree on the order of events
 - If two nodes do not shared events, i.e. they don’t interact, they don’t have to be in synch ➔ Logical clocks
Happened-before relationship

- The happened-before relation on the set of events in a distributed system:
 - HB1: If a and b are two events in the same process, and a comes before b, then $a \rightarrow b$
 - HB2: If a is the sending of a message, and b is the event of receiving that message, then $a \rightarrow b$
 - HB3: If $a \rightarrow b$ and $b \rightarrow c$, then $a \rightarrow c$
Happened-before relationship – notes

- This introduces a partial ordering of events in a system with concurrently operating processes
 - If x and y happen in two processes that do not exchange messages, then neither $x \rightarrow y$ nor $y \rightarrow x$
 - x and y are concurrent

- What happen with communication through other channels? e.g., phone

- If $x \rightarrow y$, does it mean x cause y?
Happened-before – an example
Lamport clock

- How to maintain a global view on system’s behavior that is consistent with the happened before relation?

- Attach a timestamp $C(e)$ to each event e, satisfying the following properties:
 - P1: If a and b are two events in the same process, and $a \rightarrow b$, then $C(a) < C(b)$
 - P2: If a corresponds to sending a message m, and b to the receipt of that message, then also $C(a) < C(b)$

- How to attach a timestamp to an event when there’s no global clock \Rightarrow maintain a consistent set of logical clocks, one per process
Lamport clock

- Each process p_i maintains a local counter C_i and adjusts this counter according to the following rules:
 1. For any two successive events that take place within p_i, C_i is incremented by 1
 2. When p_i sends a message m_i, it includes a timestamp $\text{ts}(m) = C_i$
 3. Whenever p_j receives m, p_j adjusts its local counter C_j to $\text{max}(C_j, \text{ts}(m))$; then executes step 1 before passing m to the application

- Property 1 is satisfied by (1)
- Property 2 by (2) and (3)
- Note: To impose total ordering (instead of partial), attach process ID
Lamport timestamps – an example

![Diagram showing Lamport timestamps with physical time and process identifiers]

- **Physical time:**
 - 1
 - 2
 - 3
 - 4
 - 5

- **Processes:**
 - **p_1:**
 - 1
 - 2
 - 3
 - **p_2:**
 - 4
 - **p_3:**
 - 5

- **Messages:**
 - m_1: from process 2 to process 3
 - m_2: from process 4 to process 5
Example use – totally ordered multicast

- To guarantee that concurrent updates on a replicated database are seen in the same order everywhere:
 - \(P1 \) adds $100 to an account (initial value: $1000)
 - \(P2 \) increments account by 1%
 - There are two replicas

Result: in absence of proper synchronization: replica #1 \(\leftarrow \$1111 \), while replica #2 \(\leftarrow \$1110 \).
Totally ordered multicast

- **Solution:**
 - p_i sends timestamped msg_i to all others
 - Message is put in a local queue $queue_i$
 - Any incoming message at p_j is queued in $queue_j$, by its timestamp, and ack to every other process
 - p_j passes msg_i to its application if:
 1. msg_i is at the head of $queue_j$
 2. for each process p_k, there is a message msg_k in $queue_j$ with a larger timestamp

- **Assume communication is reliable and FIFO ordered**

- **Also known as state machine replication**
 - Replicas follow the same transitions in the same finite state machine
Vector clocks

- With Lamport’s clocks – if $x \rightarrow y$, $C(x) < C(y)$, but if $C(x) < C(y)$, we can’t infer x causally preceded y

- Vector clock for a system with N processes – an array of N integers
 - Processes piggyback vector timestamps on each message

- Rules for updating clocks
 - Just before p_i sends a message m, it adds 1 to $V_{i[i]}$, and sends V_i along with m as vector timestamp $vt(m)$
 - When a p_j receives a message m that it received from p_i with vector timestamp $ts(m)$, it
 1. updates each $V_{j[k]}$ to $\max\{V_{i[k]}, ts(m)[k]\}$ for $k = 1 \ldots N$
 2. increments $V_{j[j]}$ by 1
Vector clocks

- For process p_i with vector $V_i[1..n]$,
 - $V_i[i]$ number of events that have taken place at process p_i
 - $V_i[j]$ number of events that p_i knows have taken place at process p_j

- Comparing vector timestamps
 - $V = V'$ iff $V[j] = V'[j]$ for $j = 1 .. N$
 - $V \leq V'$ iff $V[j] \leq V'[j]$ for $j = 1 .. N$
 - $V < V'$ iff $V[j] < V'[j]$ for $j = 1 .. N$
Vector clocks – an example

Physical time

\(\mathbf{p}_1 \)

- \((1,0,0) \) - \(a \)
- \((2,0,0) \) - \(b \)
- \(m_1 \)

\(\mathbf{p}_2 \)

- \((2,1,0) \) - \(c \)
- \((2,2,0) \) - \(d \)
- \(m_2 \)

\(\mathbf{p}_3 \)

- \((0,0,1) \) - \(e \)
- \((2,2,2) \) - \(f \)
Causally ordered multicasting

- Ensure that a msg is delivered only if all causally preceding msgs have already been delivered
- Clock adjustment only when sending/receiving messages:
 - p_i increments V_{ij} only when sending a message
 - p_j “adjusts” V_j when receiving a message
- p_j postpones delivery of m until:
 - $ts(m)[i] = V_{ij} + 1$
 - m is next msg p_j was expecting from p_i
 - $ts(m)[k] \leq V_{jk}$ for $k \neq j$
 - p_j has seen all msgs seen by p_i when it sent the message
Causally ordered multicasting

- Suppose P_j receives m from P_i with timestamp $ts(m)$
- P_j postpones delivery of m until:
 - $ts(m)[i] = VC_j[i] + 1$
 - $ts(m)[k] \leq VC_j[k]$ for $k \neq j$
Global state

- How can we determine a given property holds in a distributed system in execution?
 - With perfectly synchronized clock, easy
 - Take snapshot at 6:25:00PM CST
 - But there’s nothing like it
Global state

- **Why**
 - Garbage collection – an object is garbage if there are no longer any references anywhere in the system
 - Deadlock detection
 - Debugging

- **Some notes**
 - Each process can record the states that take place there \(- s_i^k\) – state of \(p_i\) right before \(kth\) event (so, \(s_i^0\) is the initial event)
 - To capture the state of the channel – process record the sending and received of all messages as part of their state – if sent but not yet received, then it’s in the channel
Global states, cuts and frontiers

- Global state – can be made of any set of state of all processes \(S = (s_1, s_2, \ldots, s_N) \)
 - *But which global states are meaningful?*
- Cut of a system’s execution – a subset of its global history (which is a union of prefixes of processes histories)
 \[C = h_1^{C_1} \cup h_2^{C_2} \cup \ldots \cup h_N^{C_N} \]
Global states, cuts and frontiers

- The set of events $\{e_i^C : i = 1, 2, \ldots N\}$ is called the *frontier* of the cut.
Consistent cuts and global states

- A cut C is consistent if, for each event it contains all the events that happened-before that event.
- A consistent global state is one that corresponds to a consistent cut.

Inconsistent cut

Consistent cut

Frontier: $<e_1^0, e_2^0>$

Frontier: $<e_1^2, e_2^2>$
Runs and linearization

- A run – a total ordering of all events in a global history that is consistent with each local history’s ordering
- A linearization or consistent run – an ordering of the events in a global history that is consistent with the happened-before relation on H
- All linearization (but not all runs) pass only through consistent global states
- A state S' is reachable from a state S if there is a linearization that passes through S and then S'
Chandy and Lamport’s snapshot algorithm

- **Goal** – to record a consistent global state
- **Assumptions**
 - Algorithm records state locally at processes, it says nothing about collecting it
 - Neither channel nor processes fail; reliable, exactly-once comm.
 - Channels are unidirectional and provide FIFO ordering
 - Graph of processes and channels is strongly connected
 - Any process may initiate the global snapshot at any time (just send a marker on a non-existing channel)
 - Processes continue execution and communication while snapshot is taking place
Algorithm

Algorithm uses special *marker* messages and two rules

Marker receiving rule for process p_i
On receipt of a marker message at p_i over channel c
If (p_i has not yet recorded its state) it
 - records its process state now
 - records the state of c as the empty set
 - turns on recording of messages arriving
 over other incoming channels
else
 p_i records the state of c as the set of messages it has received over c since it saved its state
endif

Marker sending rule for process p_i
After p_i has recorded its state, for each outgoing channel c
 - p_i sends one marker message over c
 (before it sends any other message over c)
Example execution

Two processes trading widgets; \(p_1 \) sends order over \(c_2 \) for widgets at \$10\) per widget; later \(p_2 \) sends widgets over \(c_1 \).

Initial state; \(p_2 \) has already received an order for 5 widgets that’s about the send.

\(p_1 \) saves state in global state \(S_0 \) and sends a marker before sending a new order.

\(p_2 \) emits order for 5 widgets from previous request; system enters \(S_2 \).
Example execution

p_1 receives order and p_2 receives marker; p_2 saves its state <$50, 1995> and that of channel c_2 as empty; sends marker over c_1

p_1 receives marker over c_1 it records the state of that channel as the single message (five widgets) that has received after first recorded its state

Final recorded state: p_1: <$1000,0>, p_2: <$50,1995>, c_1:<(five widgets)>, c_2: <>

Note that this state differ from all the global states through which the system actually passed!

The snapshot algorithm selects a cut, and therefore a state, that is consistent; that is, for all $e_i \rightarrow e_j$, if e_j is in the cut, then e_i is too
Example use – totally ordered multicast

- To guarantee that concurrent updates on a replicated database are seen in the same order everywhere:
 - $P1$ adds 100 to an account (initial value: 1000)
 - $P2$ increments account by 1%
 - There are two replicas

Result: in absence of proper synchronization: replica #1 ← 1111, while replica #2 ← 1110.
Totally ordered multicast

Solution:
- \(p_i \) sends timestamped \(msg_i \) to all others
- Message is put in a local queue \(queue_i \)
- Any incoming message at \(p_j \) is queued in \(queue_j \), by its timestamp, and ack to every other process
- \(p_j \) passes \(msg_i \) to its application if:
 1. \(msg_i \) is at the head of \(queue_j \)
 2. for each process \(p_k \), there is a message \(msg_k \) in \(queue_j \) with a larger timestamp

Assume communication is reliable and FIFO ordered
Also known as state machine replication
- Replicas follow the same transitions in the same finite state machine
Causally ordered multicasting

- Ensure that a msg is delivered only if all causally preceding msgs have already been delivered
- Clock adjustment only when sending/receiving messages:
 - p_i increments V_{ij} only when sending a message
 - p_j “adjusts” V_j when receiving a message
- p_j postpones delivery of m until:
 - $ts(m)[i] = V_{ij} + 1$
 - m is next msg p_j was expecting from p_i
 - $ts(m)[k] \leq V_j[k]$ for $k \neq j$
 - p_j has seen all msgs seen by p_i when it sent the message
Causally ordered multicasting

- Suppose P_j receives m from P_i with timestamp $ts(m)$
- P_j postpones delivery of m until:
 - $ts(m)[i] = VC_j[i] + 1$
 - $ts(m)[k] \leq VC_j[k]$ for $k \neq j$
Summary

- Synchronization is about doing the right thing at the right time …
- What’s the right time?
 - An issue when you don’t share clocks
- What’s the right thing to do?
 - Who can access what when?
 - Who is in charge?