Rethinking the design of the Internet: The end to end arguments vs. the brave new world

David D. Clark and Marjory S. Blumenthal

Presented by Josiah Matlack
End-to-end principles

• Application-level functions should not be built into the core of the network
 • Applications may have codependence
 • Applications may depend on a stable core

• Change to the core network should generally be avoided
 • Lower complexity
 • Generality
 • Efficiency
Reasons for change

• Lack of trust
 • Spam, network and application attacks (DoS)

• Increasing demand (need for stability)
 • Streaming audio/video
 • Netflix takes up 1/3 of all US bandwidth
 • Intermediate CDNs and caching of content

• Enhanced services provided by ISPs
 • Specialization of services versus innovation

• Imposition by third parties
 • Wiretapping, authoritarian governments, banned protocols
Reasons for change (cont.)

- Less tech-savvy users
What has changed?

- The rise of stakeholders (ISPs)
- Transition of government roles
- Motivations of the user base
- Tension between users
- Original principles were based on freedom and innovation
- Fine line between control and repression
- Decisions are more politicized
Interaction patterns

- Proof of identity vs. preservation of anonymity
 - Politics and free speech
 - Online voting
 - Online currency and purchases
 - Hardware/software identification (cookies, MAC address)

- Third party involvement
 - Government wiretapping, spying, censorship, taxation, etc.
 - ISP traffic regulation and load balancing
 - Private company intranets
 - Copyright law and material
Interaction patterns (cont.)

• Push and pull between third parties discovering information and users hiding it
 • Full access vs. traffic monitoring
 • ISPs claim the need for knowledge of usage patterns

• Forcible interaction
 • Trojans, DoS, spam
 • Endpoint security is insufficient

• Multiway communication (multicast)
 • One node cannot bring down network

• Need to interleave differing strategies
Technological strategies

- Modify the end node (status quo)
 - Compromise performance for correctness
 - Issues: ID is easy to fake
- Modify the core network
 - Hostile intent is likely, rather than application crutches
 - Firewalls, traffic filters and NAT already violate end-to-end principles
 - Issues: espionage is easier; impossible to filter traffic without looking at content
Technological strategies (cont.)

- Labels
 - Could label both content and users
 - Hard to enforce
 - Burden the content provider
 - Could be automated
 - Key building block of filtering schemes
 - Example: PICS system
 - Metadata tags on webpages
 - Port numbers
Technological strategies (cont.)

- Application-level services
 - Anonymizing message forwarders (Tor)
 - Mail server filtering
 - Content caching

- Trusted third parties
 - Certificate signing, time-stamping, simultaneous release
 - Store of verified user credentials
 - Public certification authorities
 - Performance issue
Non-technological challenges

• Law
 • Copyrights, transborder nature
 • After the fact, unlike technological prevention

• Vigilante self-regulation
 • MPAA, V-chip, BBB

• The price of anonymity
 • Anonymous, cyberbullying and accountability

• Government role has shrunk, as has funding
 • Antitrust law, consumer fraud, commercial code, taxation, FCC
Other considerations

- ISPs
 - Limited to core modification
 - Monopolistic claims and a lack of innovation
 - International/cultural differences

- Selective trust and selective access to data

- Rights and responsibilities of users
 - “Arms race” with third parties
 - Steganography and encryption
 - Private vs. public communication
Conclusions

• End-to-end principles
 • Flexible, general, open, and innovative
 • Clash with ISPs and governments
 • Expanding, less tech-savvy user base
 • Trust issues
 • Complex applications
 • Bad investments and short-term solutions
Questions?

- RSA and SSL
- CDNs
- SOPA/CISPA
- China’s firewall
- Protocols